Karl-Heinz John - Michael Tiegelkamp

IEC61131-3:
Programming Industrial
Automation Systems

Concepts and Programming Languages,
Requirements for Programming Systems,
Aids to Decision-Making Tools

With 139 Figures

&) Springer

Dipl.-Inform. KARL-HEINZ JOHN
Irrlrinnig 13

D-91301 Forchheim

e-mail: karlheinz john@gmx.de

Dipl.-Inform. MicHAEL TIEGELKAMP
Kurpfalzstr, 34

D-90602 Pyrbaum

e-muil: Michael Tiegelkamp@gmx.de

1SBM 3-540-67752-6 Springer—"u’eﬂng Berlin Heidt]herg MNew York

Library of Congress Cataloging-in-Publication Data

John, Karl-Heinz, 1995-

|SPS-Programmicrung mit IEC 61131-3. English]

|EC 61131-3; programming industrial automation systems: concepts and programming languages,
requircments for programming sysiems, aids 10 decision-making wolks / Karl-Dleing John, Michael
Thegelkamp, p. cm.

[nchedes biblivgraphical references and index,

TSEM 35404677526

L. Title: Programming indostrial autnmation systems. IL Tiepelkamp, Michacl, 1959- 1L Title.

T59.5)64 2001 670.42'7--de2l 00IUTEIME

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, rewse of illustrations, recitation,
broadcasting, reproducticon on icrofilm orin other ways, and storage in data banks. Duplication of
this publication or parts thereofis permitted only under the provisions of the Geeman Copyright Law
of Seplember 9, 1965, in 115 currenl version, and permission for wse must always be oblained from
Springer-Verlag. Violations are liable for prosecution act under German Copyright Law.

Springer-Verlag is a company in the BertelsmannSpringer puplishing group.
0 Springer-Verlag Berlin Heidelbery 20001
Printed in Germany

The use of registered names, trademarks, etc, in this publication does not imply, even in the ahsence
of a specific statement, that such names are exempt from the relevant protective laws and regulations
and therefore free for general use.

Typesetling: Camera ready by authors
Cover design: Struve & Partner, Heidelhorg
Printed on acld-free paper SPIN: 10774431 6213020/kk - 543210

Contents

LINEFOAUCTION coieeeiee ettt ettt s eebe et e et e eabesaeesaeesrees
1.1 Subject Of thE BOOKcceeeeieiieiiicese st
1.2 The lEC 61131 Standard.........ccecoieereeireeiecee et sre et erreereesreesreesreeere e s
1.2.1 Goals and benefits of the standard...........cccccveeeieeeiiecicceccece e

Manufacturers (PLC hardware and software)
CUSIOMENS......cociiiii s

1.2.2 HiStory and COMPONENLSccerreiureeeeeiesiestesteseeeseeeeeessessessessesseessesssseesses
1.3 The OrganiSatioNPLCOPENccvveeeeeereenie e steseereeseeseeste s sre s e eseesees e snesresnes
IR T N 1 1SR
1.3.2 Committees and fields Of aCtiVItY.......ccovvereeeerrre e

T TR B -0
Certificationcccoveveveevevicicieees
Exchange format for user programs

2 Building BIocks of IEC B1131-3......cccoiiiriereeie e
2.1 Introduction to the New Standard...........c.ccvereininennneeeee e
2.1.1 Structure of the building BIOCKS.........ccooiiiiiiieeee e

Declaration of variables..........ccvvvvieveiicienisieneeseseee e
Code part of aPOUccoiirinieereise e

2.1.2 Introductory example Wrtten in ILccooeiiiinieee e
2.1.3 PLC 8SSIONMENTeitiieieieieiesie ettt st sb e se e bbbt s e e e e e
2.2 The Program Organisation Unit (POU)ccocererierieenenine e
2.3 EIementS of APOUccooiiriiiiesese e
2.3 L EXAMPIC ..ttt b bbb b et e e e e
2.3.2 DECIAIratioN PAItceeeeiieieisierie ettt e bbb e e se e b e

Types of variablesin POUSs.

Characteristics of the POU interface..........cocoevevrennneee

Theformal parameters and return values of a POU
External and internal accessto POU variables.....................

RS TC T O 0o (=Y o= 1 AO USSR
2.4 The FUNCLION BIOCKc.veiiiieciie ettt ettt ettt eeaee e baeeenee e
2.4.1 Instances of fuNCLION BIOCKS..........ccueeiiiiiiece e
What isan “iNStance’ ?......cceeevvereeieneeieneresenenns
Instance means “structure’.
INSLANCE MEANS “IMEIMONY” . ..c.eetereeeteeee ettt sttt be et ne s e e e neenbeseesbene 45

2 Contents

Relationship between FB instances and data blOCKS............ccoveiriniiininnieneseeereeeee 46
2.4.2 Re-usable and object-oriented FBScccoiiiiieieneeeeee e 47
2.4.3 Types of variableS N FBS........cocoiiieiieeee e 48
2.5 THEFUNCHION ..ottt e 48
2.5.1 Types of variables in functions and the function value.............ccccooeeenee 49
2.5.2 Execution control with EN @and ENO.........c.ccoineiininnineeeeesese e 50
2.6 THE PrOQraM.....cceiieieietiee ettt et sbe st b e et be e e e 52
2.7 Calling Functions and Function BIOCKS...........cccerrieiiniiiiese e 53
2.7.1 Mutual CallSOf POUS........cccoiiieiicirie ettt 53
2.7.2 Recursive callsare forbidden...........coeoieiiiiinnisce e 54
2.7.3 Calling with formal Parameters...........cooeeerererereeiereee e 56
2.7.4 Callswith input parameters omitted or in a different order.........cccceeeeenee 59
2.7.5 FB instances as actual FB parameters.........ccooeiereienenesesieeseese e 60
Example of an indireCt FB Call.ccoviiiiirinceiiceenee st 62
FB instance names as actual parameters of functions.....
Function values as actual PAramELErS.cccourvrreueriririeiiinisi ettt
2.8 SUMMary Of POU FEALUIES..........ccceverierieeieieeieeeeiees e see e se st sesseenaeseesaesnesnens
3 Variables, Data Typesand Common Elements..........cccooveeiiienennncnenennene 65
3.1 Simple Language EIEmMENES........c.coi et 65
3.1.1 ReSErVEd KEYWOITSoviieeieeiie e 67
3.2 Literals and IdentifierScccooeveeieiene e 68
B2 L LITEIaAlS ..ttt e 68
322 IAENLITIEIS ...ttt et 70
3.3 Meanings of Data Types and Variables...........ccooeveierininenene e 71
3.3.1 Fromdirect PLC addresses via symbolsto variables..........cccoovinininieenne 72
3.3.2 The data type determines the properties of variables..........ccccoeeiivincncnen. 73
3.3.3 Type-specific use of Variables.........coererieiiiinieee e 74
3.3.4 Automatic mapping of variables onto the PLCcccooeiiiiiininiiccee 75
B4 DALB TYPESeeiieeeeteeeteete ettt sttt st sae et e e et ae e s ae e e b e e b e et e e be e re s ee e sas 75
341 Elementary datatyPeS......ccoieereeriere et 76
3.4.2 Derived datatypes (type definition)ccoceveiereeienenese e 77
Additional properties for elementary datatypes. ..o 78
AATTBYS. ettt b et bt E e e R R R R Rt R e R R e e s e bRt b e e nenne s 80
DA SEIUCIUIES. ...t bbb 81
Initial values in type defiNitions.ccoiieiiiicie e 83
3.4.3 GENENIC LA TYPES.c.ecverreeeiietereeie sttt 84
SO VATADIES ... 85
3.5.1 Inputs, outputs and flags as special variables...........ccoocooiiiiiiinciinicies 86
3.5.2 Multi-element variables: arrays and StruCtUres...........ccooeerererieeieniieseeene 88
3.5.3 Assignment of initial values at the start of aprogram...........ccocceeeieieienenne Q0
3.5.4 Attributes of variabl@ tyPeSceoveeiiere e 1

3.5.5 Graphical representation of variable declarations...........cc.ccovoeririeicicienne 93

Contents 3

4 The New Programming Languages of IEC 61131-3.........cccoeeievenenienennens
= 0 ot o) 1 1 SR
0 A T 1 o o T T TR
4.1.2 The universal accumulator (Current RESUIL)cccceeveririeiinirecereere e
4.1 .3 OPEIAOIS ...ceuteeteeieeeeeeeeee st e saeesaeasbe e bt ebesabesaeesaeesaeesaeesaeeneeeaseeaseensesneasseans
Negation of the operand.ccccevreerinreeinreeces
Nesting levels by parenthesis..............
Conditional execution Of OPErators..........ccouvvveueeerirereeeenenenns
4.1.4 Using functions and function blOCKS..........ccccvevveeieierenie s
CalliNg ATUNCHION. ...ttt et
Calling afunCtion BIOCK.ccceiiirieirerieiste e
4.1.5 L example: MoUNtain FailWayccccoerereienenieeiesesese s sesse e see e
4.2 SIUCEUrEd TEXE ST ..ooiecieeeser ettt s e e na e e
4.2.1 ST SIAEMENTS. ... ee e e e s ee e e sreesaeeseeeeeeneeeneenseenseens
4.2.2 Expression: Partial statement in STccvvvvvcivceceeeerese e
Operands.
Operators,
FUNCLION 8S OPEIaLON.oeviieieecenie e
4.2.3 Statement: ASSIONMENT.......coueeireiee et e
4.2.4 Statement: Call of function blocks.........cccevveeieiiiiciiecec e,
4.2.5 Statement: RETURNcooiiiiiiiece ettt sreenreens
4.2.6 Statement: Selection and Multi- SEIECtioN........c.ccevieeiecicie e,
SEIBCHON. ...
Multi- selection.ccccceveereneeennene.
4.2.7 Statement: Iteration....................
WHILE and REPEAT statements.......
FOR statement.cceeevenerenienns
EXIT SEAEMENE.......covieeeirieiereerieee e
4.2.8 Example: Stereo cassette recorder
4.3 Function Block Diagram FBDcccccevevineie e e e
4.3.1 Networks, graphical elements and connections of LD and FBD
INEIWOTK TADEL ...ttt sttt et 128
Network comment.
Network graphic.coceeeeeienennns
4.3.2 Network architecture in FBDc.coveiieiieiece e
4.3.3 Graphical objeCtSiN FBD ..o
CONNECLIONS. ...ttt
Execution control (jumps).
Call of functions and function blocks..................
4.3.4 Programming methodsin FBD
Network evaluation.ccceeeveeeerenenieneienienenns
Feedback variable. ...
4.3.5 Example; Stereo Cassatte reCOrderovviiiinimrieierere s
Comments on the networks of Example 4.24 and Example 4.31ccccoveveienenncnicnenne. 140

4 Contents

4.4 Ladder Diagram LDccccveeeieriie e seeeeeesie e e st sae st enae e 141

4.4.1 Networks, graphical elements and connections (LD)ccccoeevvvevvenivenne 141

4.4.2 Network architeCtur@ iN LDcocvreiinineine e

4.4.3 Graphical ObJECISIN LDcceiireieecieeeeere e
CONNECLIONS. ...

Contacts and cails.
Execution control.cccoeeveivieeviennnns
Call of functions and fuNCtioN BIOCKS.c.coivirieiiicicie s

4.4.4 Programming MEthOdS iN LDcccovveeiiiieeeece e
Network evaluation.c.cccveeveeenenenne.
Feedback Variable. ..o

4.4.5 Example in Ladder Diagram: Mountain railway

Comments on the mountain raillway NEWOIKS.ccooerieerieienereeese e s
4.5 The American way of Ladder programmingccoceeeeeeeeeereesereesesieeseeneens
A.5.1 NEIWOIK LBYOUL........ocvieveieeetieeeieeie ettt s
4.5.2 Module addresses and MEMONY @reaS.........ccoerererierierieeieereesieseesreseeeeseens
A.5.3 CONFIGUIBLTION ...ttt e sb e eae e
4.6 Sequential FUNCLioN Chart SFC........ccoiiiiiiieneeeeie e
4.6.1 Step/ Transition COMDINGALTONcoceeiieiierieriere e e
4.6.2 Step - tranSition SEQUENCE.c.ceeeieiereerie et se et e e e e

TEANSITION. .t 174
4.6.4 Step execution using action blocks and actions.............ccoceeeveeienieieienens
4.6.5 Detailed description of actions and action blocks

2 1 o TSRS
ACHON DIOCK. ...ttt st st et e s b e aeesa e e e besaesreeseensentesnesens 182

4.6.6 Relationship between step, transition, action and action block

4.6.7 Action qualifiers and execution CONrolcoeeerieeierenene e
(o T [111= SR
SEOUENLTEI CONEIOL. ...ttt sttt et b e sttt e e b e e e b e e

4.6.8 EXample: “DiIN0 Parkccooioeiiieiieeie e eeee e
Comments on the network for the dinosaur Park...........coveerrieinneceee

5 Standardised PLC FUNCLIONAIITYccoveiiriiieieeee e 201
5.1 Standard FUNCLIONS...........ooovieiiecetie ettt ettt et eaeeeebee e eaeeereas 202

Overloaded functions.
EXtENSIDIE FUNCLIONSccuieieiecececee et nre e

Contents 5

TNt I T o)== S 209
TYPE CONVErSION FUNCLIONS......c.cevieeiietieeiiete ettt s 210
NUMENTCal FUNCLIONS........eviiiiicie bt 211
ATITAMELIC FUNCLIONS......c.eiieiccieccee et aesreeneeneene 211
Bit-Shift TUNCLIONS ...t 212

Bitwise BOOIEAN fUNCLIONS........c.couiiiiiicicie ettt s 212

Selection functions........ .213

Comparison functions........ .214

Character String fUNCHIONScoiveieieeeseis et s ne e enn 215

FUNCLiONS fOr tIME datALYPES. ..ottt 215

Functions for enumerated datatyPeS. ..o 216
5.2 Standard FUNCtion BIOCKS..........ccuviieiiirieriesceere s 217
I o 1 0 o)== S

Bistable element (flipflop)

Edge detection

Counter........ccoeeereenennn

LI L. RSO TRTOSR
6 State-of-the-Art PLC Configurationcccocoveieieninienene e 227
6.1 Structuring Projects with Configuration Elements...........ccccooereieveneneienne. 227
6.2 Elements of a Real-World PLC Configurationccoccoceeeroenienesennseenn. 228
6.3 Configuration ElEMENtS..........coiiiriiieee e 230
B.3.1 DEfINITIONSoviiiieieeeee et et 230
6.3.2 The CONFIGURATIONccociiiiiieiiriiieiesieeeiesieeeee s sesaese s ssesens 231
6.3.3 THE RESOURCEceoiiiriirietiitiieie sttt sae e ssens 232
6.3.4 The TASK With run-time program...........cueveeerneenene s 233
6.3.5 ACCESS deClaralions..........ceereeuerneerienie et see e s see e e 236
6.4 Configuration EXamPIe........ccoeeiiriiieiese s 237
6.5 Communication between Configurations and POUS...........cccceeeeeniienenenne. 240
7 Innovative PLC Programming SYyStEMS........ccccevvrereneeieeneneseeseeseeeeneenes 243
7.1 Requirements of Innovative Programming TOOISccccvovvivvenenveerereseene, 243
7.2 TechnologiCal Changeccceeeereere s 244
7.2.1 ProCessor PEMfOIMANCE........cccveierereieeeeeeseeste s s e esee e ste s e eenee e nes 244
7.2.2 Full-graphics display and printOutccccooeveeereereere e 244
7.2.3 OpErating SYSLEIMS.ccveiereireieceeeeeeeesae et e e et sre e eeeneesrenes 244
7.2.4Uniform user iNterfaces........oovviviiriris s 245
7.3 Decompilation (Reverse DOCUMENLation)ccvevvererereeseesseeseereeseeseeseeseeenes 245
7.3.1 NO deCOMPIELION.......eeeeieieisiesie ettt e e e e 246
7.3.2 Decompilation with symbols and COMMENES.........cccccerererierenerreereereseenens 246
7.3.3 Decompilation including graphiCs.........coovveeeererenie s 246
7.3.4 Sources stored iNthe PLC.........oociiiiiesee e 247

7.4 Language Compatibility.......cccceeereererererese s 247

6 Contents

7.4.1 Cross-COMPIBEIONecueeieieiese et nes 248
The motivation for Cross-CoOMPIHATON.cciiiiirieirere e 248
Different approaches in graphical and textual 1anguages.cccoveieirieenninccnereccne 249
Differences in languages affect cross-compilation.cccoeverrineinennienecse e 250

RESLICHONS IN LD/ FBD.......cvctiieieieieiiieestesee e ea st sa e ssee st saenessesaennnnes 251
RESIICHONS TN TL/ ST .ottt st st a e et e sresbe e e seeaenrenns 251

Cross-COMPIELION 1L / ST. ..ottt 251

Full cross-compilation only with additional information............c.ccceeereireneinenncseceeees 252

Quality criteriafor cross-COMPIALHON.oueveiriiieiiiieee s 253
7.4.2 Language iNdEPENENCEc.vcveeeeeeeeeeeereeee e e e see e e s sae e st sre e 254
7.5 DOCUMENEALION ...ttt ettt st st sttt 255
7.5.1 CrosSreferenCe liSh. . oce e e 255
7.5.2 Allocation list (Wiring [ISE) vveeeeeeeeerere e 256
7.5.3 COMMENES ...ttt et r e e n e 257
A (o)L= w0 = = o = S 257
7.7 Test & CommIisSiONiNG FUNCLIONS........cceiirereneeeeeee e 261
A 5 (07| = 1 - = 261
7.7.2 Online modification of aprogram........ccccoceeeevererieereeresiese s 262
7.7.3 Remote control: Starting and stopping the PLC.........ccccveveeveve v 263
7.7.4 Variable and program StatUS..........cceeeereererenesiesesesreesesee e srese e eseeee s 263
A8 o (o1 o S 267
A SN (0T = (- P 268
7.7.7 Testing Sequential Function Chart programs.........cccceveeieveeeseereeseeneeneenns 269
7.8 Data BlOCKS aNd RECIPES......civirieieeriirieieie e s et e e 269
7.9 FB INEErCONNECLION........oveieiiereeeete ettt sttt sttt 273
7.9.1 Data exchange and co-ordination of blocksin distributed systems............ 273
7.9.2 Macro techniquesin FB interconneCction..........cccceeveveeveeriereseseesesesseeeens 275
7.10 Diagnostics, Error Detection and Error Handling.......ccccocvvevvvveeecceenennene 276

Error concept of IEC BLL3L-3. ..ot 277

Extended error handling model (beyond [EC).cccoieiinmeennreeeseeeseeesenesieeseea 277
7.11 Hardware-DependenCe.ccvevevereiee et e st s 279
7.12 Readiness for New FUNCLIONAILYcccovverieieeeececcce e 279
7.12.1 Exchange of programs and data..........cccceeeeererereseseeieenesene e eresseeeenes 280
7.12.2 Extension with additional software packages.........ccocevvvvevvvrivneseneennne 281
8 Main Advantages of IEC B61131-3........ccociirirerieie e 283
8.1 Convenience and Security with Variables and Data Types.........cccceeveereeenne 283
8.2 Blocks with Extended Capabilities..........cocoeierererieierere e 284
8.3 PLC Configuration with Run-Time Behaviour............ccoceiereienenenenceene 285
8.4 Uniform Programming LanQUaBGgESccueeerueruereereeriereesiesieseesie e seesie e seeeas 286
8.5 Structured PLC ProgramsS..........ciieueeeeeerieriesie e siesesies e sie e e ses e e e 286
8.6 Trend towards Open PLC Programming SysStems.........ccoceeerenenenesiceeene 286

T O00] 0103 11 1o) o [288

Contents 7

9 Programming by Configuring with EC 61499..........ccccooiiiniieneneeiee e, 289
9.1 Programming by FB Interconnection with IEC 61131-3............ccceceeieennnienne. 289
9.2 |EC 61499 — The Programming Standard for Distributed PLC Systems....... 290
0.2.1 SYStEM MOEL ..ottt e 291
0.2.2 DEVICE MOUE ..ottt e s b e 291
0.2.3 RESOUICE MOMEN ..o e e 292
9.2.4 ApPlication MOCE!ccouiiiiiiieieeeee e e 293
9.2.5 FUNCtion BlOCK MOGELooiiieii et 294

CompPOSIte FUNCLION DIOCKS.cviiteiiiriecerree e 296
9.2.6 Creating an appliCalioNcceeveuererere s e e ens 298
9.3 Overview of the Parts of IEC 61499.........cccooeeirinerinineeneseeseseeeeeseeens 298
10 ContentS Of CD-ROMccoiiiiiiieiecie e 299
10.1 IEC Programming Systems STEP 7 and OpenPCS...........cccocooienenienieninne 299

Demo versions of STEP 7 (Siemens) and OpenPCS (infoteam)...........cccovreererneeinnenenens 299

TL @XBMPIES ...ttt ettt b e et b et a b e b e ne b e ne e ene s 300
10.2 Buyer's Guide for |EC 61131-3 PLC Programming Systems.........c.cccceee. 300
A Standard FUNCLIONS........cooiiiinee e s 301
A.1 Type Conversion FUNCLIONSc.cocvierieiesrineeeeseesee e s 302
A.2 NUMENiCal FUNCLIONS... ..ottt s 303
A.3 Arithmetic FUNCLIONS.........cooiiiiiecrere e 304
A4 Bit-Shift FUNCHIONS.......oiiirieeserec e 305
A.5 Bitwise BOOIEaN FUNCLIONScccoveiiirieise e 306
A.6 Selection Functions for Max., Min. and Limit.........ccocovevennininninnnnens 307
A.7 Selection Functions for Binary Selection and Multiplexers..........cccceveenene 308
A.8 CompariSON FUNCLIONSccuecueeeeeeieseese e stese e see e s ste e sre s e enaeseense s 310
A.9 Character String FUNCLIONS.........cccviiiereeceieses et 311
A.10 Functionsfor Time Data TYPES......cccvveruererreereriesesiesreseseeeeseese e ssesneens 313
A.11 Functionsfor Enumerated Data TYPES......ceevverrererrerereseseseereeneeseeseeseenns 314
B Standard FUNCLion BIOCKS.........cccoiiiiiineiireee e 315
B.1 Bistable Elements (Flip-FIOPS).....ccccoiiiririnenieeee e 316
B.2 EAQE DELECLION. ...ttt 317
B.3 COUMEIS... .ottt ettt e st be b e ab e ean e saeesaeesaeas 318
B4 TIMEIS ...ttt ettt st b et b e et e b e sbe bt saesbe e e e nnennens 320
O I = T3]] =S 323
C.1Example of aFUNCTIONccooeeiiierese s ceeseese e st enee e e e 323
C.2 Example of aFUNCTION_BLOCKcccovviirieeereerere e s eeeeseenes e eens 325
C.3 Example of aPROGRAMcccoviireeere et se st e et st seenee e e ens 327
D Standard Data TYPES.......ceerereeieieeie ettt e sbe e see e sae e 331

[OF=TU I o] =1 o o 333

8 Contents

F Implementation-Dependent Parameters..........cccoevevenevenenenesenceeeneen 335
G IL Syntax EXamMPIE......cccoeiiiirece e et 339
G.1 Syntax Diagrams fOr ILccccvveieeieieeseses et 340
G.2 IL Example from Syntax Diagrams.........c.cccceeeveeerieereeneesieseseseseeesseeseees 347
H Reserved Keywords and Delimiters........ccooovieiiieneneneneeee e 349
H.1 ReSEIVEd KEYWOITS.......c.ceeeieieieieie ittt st e s 349
H.2 DEIIMITEIS... et e ean 353
| Planned Amendmentsto the Standard ... 357
J GIOSSAIY ittt ettt bbbt e et b e e b nae e 359
(G 211 o] 11T | =T] o /S 365
[0o 1= ST URUSUS 331
AULhOr BiographiS.......ccvieeieeeese st nne s 375
Karl-HEINZ JONN ..o e 375

MicChael TIegEIKaMP.. ..o ieee e enen 375

i1 ntroduction |

The rapid advances in performance and miniaturisation in microtechnology are
congtantly opening up new markets for the programmable logic controller (PLC).
Specialy designed controller hardware or PC-based controllers, extended by
hardware and software with real-time capability, now control highly complex
automation processes.

The different types of PLC cover a wide task spectrum - ranging from small
network node computers and distributed compact units right up to modular, fault-
tolerant, high-performance PLCs. They differ in performance characteristics such
as processing speed, networking ability or the selection of 1/0 modules they
support.

Throughout this book, the term PLC is used to refer to the technology as a
whole, both hardware and software, and not merely to the hardware architecture.

The broad spectrum of capability of the hardware requires corresponding support
from suitable programming tools, to alow low-cost, quality-conscious creation of
both simple and complex software solutions. Desirable features of programming
tools include:

- Simultaneous use of several PLC programming languages
- "Online" modification of programsin the PLC

- Reverse documentation of the programs from the PLC

- Reusability of PLC program blocks

- "Offline" testing and simulation of user programs

- Integrated configuring and commissioning tools

- Quality assurance, project documentation

- Use of systems with open interfaces.

Modern PCs have enabled increasingly efficient PLC programming tools to be
developed in the last 10 years.

The classical PLC programming methods, such as the instruction list, ladder logic
or control system function chart, which have been employed until now, have
reached their limits. Users want uniform, manufacturer-independent language

10 1 Introduction

concepts, high-level programming languages and development tools similar to
those that have already been in existence in the PC world for many years.

With the introduction of the international standard IEC 61131 a basis has now
been created for uniform PLC programming taking advantage of the modern
concepts of software technology.

E|1 Subject of the Book|

The aim of this book is to give the reader an understandable introduction to the
concepts and languages of standard IEC 61131. Simple examples are given to
explain the ideas and application of the new PLC programming languages. An
extensive example program summarises the results of each section.

The book serves as a helpful guide and introduction for people in training and at
work who want to become acquainted with the possibilities of the new standard.

Some experience with personal computers and basic knowledge in the field of PLC
technology are required. Experienced PLC programmers will also find information
here which will ease the changeover to the programming systems of the new
generation. For this purpose, the concepts and terminology of previous systems are
compared and contrasted with those used in the world of IEC programming and
the advantages of programming according to the |EC standard are explained.

This book is a useful reference work for students and facilitates the systematic
learning of the new programming standard.

Readers can also use the enclosed "Buyer's Guide" to evaluate individual PLC
programming systems for themselves. See the enclosed CD-ROM.

The formal contents and structure of the IEC standard are presented in a practice-
oriented way. Difficult topics are clearly explained within their context, and the
interpretation scope as well as extension possibilities of the standard are
demonstrated.

This book is intended to give the reader concrete answers to the following
guestions :

- How do you program in accordance with IEC 61131? What are the essential
ideas of the standard and how can they be applied in practice?

- What are the advantages of the new international standard IEC 61131
compared with previous (national) PLC programming standards? What
innovations and opportunities does the new standard offer?

1.1 Subject of the Book 11

- What do users have to be aware of if they want to change to a programming
system of the new generation?

- What features must contemporary programming systems have in order to be
consistent with IEC 61131 and to fulfil this new standard?

- What do users need to look for when selecting a PLC programming system:
what criteria are decisive for the performance of programming systems?

Chapter 2 presents the three basic building blocks of the standard: program,
function and function block. An introductory example which includes the most
important language elements of the standard and provides an overview of its
programming methods gives an initial introduction to the concepts of IEC 61131.

Chapter 3 describes the common language elements of the five programming
languages as well as the possibilities of data description with the aid of
declarations.

The five programming languages of IEC 61131 are explained at length and
illustrated by an extensive example in Chapter 4.

The strength of IEC 61131 is partly due to the uniform description of frequently
used elements, the standard functions and standard function blocks. Their
definition and application are described in Chapter 5.

After programming, the programs and the data have to be assigned to the
features and hardware of the relevant PLC by means of configuration. Thisisto be
found in Chapter 6.

The PLC market is developing into a technology with very specific
requirements. These special features of programming for a PLC as well as their
implementation using the new facilities of IEC 61131 are the subject of Chapter 7.

Chapter 8 summarises the most important qualities of the standard from
Chapters 2 to 7. The essential advantages of the standard and of consistent
programming systems are outlined here for reference.

Chapter 9 introduces the future standard IEC 61499 for distributed automation
processes. It is based on |IEC 61131-3, but adopts a wider approach to cater for the
demands for parallelism and decentralisation imposed by modern automation
tasks.

Chapter 10 explains the use of the enclosed CD-ROM. It includes al the
programming examples in this book, a buyer's guide in tabular form, and
executable demo versions of two |EC programming systems.

The Appendices supply further detailed information.

The glossary in Appendix J gives a brief explanation of the most important terms
used in this book in alphabetical order.

Appendix K contains the bibliography, which gives references not only to books
but also to specialised papers on the subject of IEC 61131-3.

Appendix L is a general index which can be very helpful for the location of
keywords.

12 1 Introduction

fi]2 The IEC 61131 standard |

The five parts of the standard IEC 61131 summarise the requirements of modern
PLC systems. These requirements concern the PLC hardware and the
programming system.

The standard includes both the common concepts aready in use in PLC
programming and additional new programming methods.

IEC 61131-3 sees itself as a guideline for PLC programming, not as arigid set of
rules. The enormous number of details defined means that programming systems
can only be expected to implement part but not al of the standard. PLC
manufacturers have to document this amount: if they want to conform to the
standard, they have to prove in which parts they do or do not fulfil the standard.

For this purpose, the standard includes 62 feature tables with requirements,
which the manufacturer has to fill in with comments (e.g. "fulfilled; not
implemented; the following parts are fulfilled:...").

The standard provides a benchmark which allows both manufacturers and
customers to assess how closely each programming system keeps to the standard,
i.e. complieswith IEC 61131-3.

For further proof of compliance, PLCopen (see Section 1.3) defines further tests
for compliance levels which can be carried out by independent institutions.

The standard was established by working group SC65B WG7 (originally: SC65A
WG6) of the international standardisation organisation IEC (International
Electrotechnical Commission) which consists of representatives of different PLC
manufacturers, software houses and users. This has the advantage that it is
accepted as a guideline by most PLC manufacturers.

fi]2.1 Goals and benefits of the standar df

Because of the constantly increasing complexity of PLC systemsthere is a steady
risein costsfor:

- Training of applications programmers
- The creation of increasingly larger programs
- Theimplementation of more and more complex programming systems.

1.2 The IEC 61131 standard 13

PL C programming systems are gradually following the mass software market trend
of the PC world. Here too, the pressure of costs can above all be reduced by
standardisation and synergy. Because the standard brings previously manufacturer-
specific systems closer together, both manufacturers and customers stand to gain
from IEC 61131-3.

M anufacturers (PLC hardwar e and softwar €)
Several manufacturers can invest together in the multi-million dollar software
required to fulfil the functionality necessary in today's market.

The basic form of a programming system is determined to a large extent by the
standard. Basic software such as editors, with the exception of particular parts like
code generators or "online"-modules, can be shared. Market differentiation results
from supplementary elements to the basic package which are required in specific
market segments, as well as from the PLC hardware.

Through the introduction of the standard a lively exchange of experience and
products is currently taking place between hardware and software manufacturers.
Development costs can be substantially reduced by buying ready-made products.
The error-proneness of newly developed software can be greatly reduced by the
use of previoudly tested software.

Therisk of an inappropriate development (the system does not satisfy the market
needs) is smaller. The standard sets the rules which the customer already knows
from other IEC 61131-3 products.

The development costs of contemporary programming tools have increased
significantly as a result of the required functionality. By buying ready-made
software components or complete systems the "time to market" can be significantly
shortened, which is essential in order to keep pace with the rapid hardware
evolution.

Customers
Customers often work simultaneously with PLC systems from different
manufacturers. Up to now this has meant that employees have needed to take
severa different training courses in programming, whereas with IEC 61131-3-
compliant systems training is limited to the finer points of using the individual
programming systems and additional special features of the PLCs. This cuts down
on the need for system specialists and training personnel, and PLC programmers
are more flexible.

The requirements of the standard ease the selection of suitable programming
systems because systems that conform to the standard are easily comparable.

Though it is not expected that complete application programs will be able to be
exchanged between different PLC systems in the foreseeable future, language
elements and program structure are nevertheless similar among the different IEC
systems. This facilitates porting onto other systems.

14 1 Introduction

fl]2.2 History and componentq

The standard |EC 61131 represents a combination and continuation of different
standards. It refers to 10 other international standards (IEC 50, IEC 559, |IEC 617-
12, IEC 617-13, IEC 848, ISO/AFNOR, ISO/IEC 646, 1SO 8601, 1SO 7185, 1SO
7498). These include rules about the employed character code, the definition of the
nomenclature used or the structure of graphical representations.

Several efforts have been made in the past to establish a standard for PLC
programming technology. Standard IEC 61131 is the first standard which has
received the necessary international (and industrial) acceptance. The most
important precursor documentsto IEC 61131 arelisted in Table

Y ear German inter national
1977 DIN 40 719-6 (function block IEC 848
diagrams)
1979 Start of the working group for the first
IEC 61131 draft
1982 VDI guideline 2880, sheet 4 Completion of thefirst IEC 61131 draft;
PL C programming languages Splitting into 5 sub-workgroups
1983 DIN 19239 PLC programming Christensen Report (Allen Bradley)
PL C programming languages
1985 First results of the IEC 65 A WG6 TF3
1990 IEC 61131 Parts 1 and 2 are made
standard
1992 Internationa standard |IEC 61131-1, 2
1993 DIN EN 661131 Part 3 International standard IEC 61131-3
1994 DIN EN 661131 Parts 1 and 2
1995 International standard |EC 61131-4
1996 Additional guideto DIN EN
661131 (user’'sguide,
IEC 61131-4)
1994 — 2001 Corrigendum to |EC 61131-3
1995, 1996 Technical Reportstype 2 and 3
1996 - 2001 Amendments

Table [J1.[]mportant precursors and milestones of IEC 61131-3

The standard contains six parts as well as a Corrigendum, which includes error
corrections in the standard (as of August 1999). Two Technical Reports and an
Amendment compl ete the documentation. These are not (yet) however adirect part
of the standard:

Part 1: General information:

1.2 The IEC 61131 standard 15

Part 1 contains general definitions and typical functional features which distin-
guish a PLC from other systems. These include standard PLC properties, for
example, the cyclic processing of the application program with a stored image of
the input and output values or the division of labour between programming device,
PLC and human-machine interface.

Part 2: Equipment requirements and tests:

This part defines the electrical, mechanical and functional demands on the devices
as well as corresponding qualification tests. The environmental conditions
(temperature, air humidity etc.) and stress classes of the controllers and of the
programming devices are listed. A revision is at present under devel opment.

Part 3: Programming languages:
Here the PLC programming languages widely used throughout the world have
been co-ordinated into a harmonised and future-oriented version.

The basic software model and programming languages are defined by means of
formal definitions, lexical, syntactical and (partially) semantic descriptions, as well
as examples.

Part 4: User guidelines

The fourth part is intended as a guide to help the PLC customer in al project
phases of automation. Practice-oriented information is given on topics ranging
from systems analysis and the choice of equipment right through to maintenance.

Part 5: Messaging service specification: (in preparation)
This last part is concerned with communication between PLCs from different
manufacturers with each other and with other devices.

In co-operation with 1SO 9506 (Manufacturing Message Specification; MMS)
conformity classes will be defined to allow PLCs to communicate, for example, via
networks. These cover the functions of device selection, data exchange, aarm
processing, access control and network administration. Part 5 has not yet been
released (Committee Draft CD).

Technical Report 2 "Proposed Extensionsto IEC 61131-3":

A list of proposals describes alternatives, extensions or changes to |IEC 61131-3.
This will be used for preparation of the next revision of the standard and exists at
present in the form of a Committee Draft.

Technical Report 3 "Guidelines for the application and implementation of
programming languages for programmable controllers':

This report supplies interpretations of points left open by the standard. It contains
guidelines for implementation as well as application tips for the end user and
programming advice.

Itiscurrently at the voting stage (Committee Draft for Final Voting CDV) and will
probably be published in IEC 61131-3.

16 1 Introduction

Corrigendum "Proposed Technical Corrigendum to IEC 61131-3":
The Corrigendum corrects errors in the standard which were found after its
publication.

Amendments "Proposed Amendmentsto |IEC 61131-3";

The Amendments present a collection of improvements and above all extensions to
the standard which have not as yet been published. This document was introduced
in order to be able to add important improvements without having to wait for a
complete new revision of the standard.

Part 8: Fuzzy Control Language:
The draft currently been debated at the voting stage extends the programming
languages to include Fuzzy Logic.

The standard describes a modern technology and is therefore subject to strong
innovation pressure. This explains why further development of the findings of the
standard is being carried out at both national and international level.

This book is concerned with Part 3 "Programming Languages', in short
IEC 61131-3. It also incorporates the findings and interpretations of the two
Technical Reports ([IEC TR2-94] and [IEC TR3-94]) and the improvements
described in the Corrigendum ([|EC CORR-94]).

IEC 61131-3 has been adopted in Germany as German standard "DIN EN 661131-

3" ([DIN EN 661131-3-94]). It thus replaces the standards DIN 19239, DIN
4071976 aswell asthe VDI guideline VDI 2880 Sheet 4.

fi]3 The Organisation PL Copen|

PLCopen, founded in 1992, is a manufacturer- and product-independent inter-
national organisation. Many PLC manufacturers, software houses and independent
institutions in Europe and overseas are members of the organisation.

fi]3.1 Aimd

The aim of PLCopen is the promotion of the development and use of compatible
software for PLCs ([PLCopen-99]).

The means for reaching this target are based on:

1.3 The Organisation PLCopen 17

- The application of the international standard IEC 61131-3,

- The commitment of the members to produce or employ PLC products which
conformto |EC 61131-3,

- Common marketing strategies such as fairs or workshops,

- Support for the international standardisation committee IEC WG 65B,

- Support for national standardisation committees like DIN-DKE UK 962.2
PLC,

- Establishment of compliance classes to allow better evaluation of programming
systems, and commissioning of independent institutions to carry out the
required checks.

PL Copen is not another standardisation committee, but rather a group with a com-
mon interest wanting to help existing standards to gain international acceptance.
Detailed information can be found on the Internet (http://mww.plcopen.org).

[1]3.2 Committees and fields of activity]

PL Copen is divided up into several committees, each of which handles a specific
field of interest, as shown in Figure[L.1]:

| General Meeting |

| Board of Management |

| Managing Director |

|Technical Committees| |Pr0motiona| Committees|
—|Promotion Activities |
—|Common Training |
—|Promotion North-Americal
—|Promotion Japan |

Figure Dl.[tommitte&e of PLCopen

The technical committees work out guidelines for common policy; the promotional
committees are responsible for marketing measures.

18 1 Introduction

The work in the committees is carried out exclusively by representatives of
individual companies and institutions. This ensures that the resulting papers will be
accepted in industry.

fl]3.3 Resultd

As a result of the preparatory work of the promotional committees, PLCopen is
represented at several fairs in Europe and the USA. Workshops and advanced
training seminars have brought the desired international recognition for PL Copen.

As a discussion forum for customers, manufacturers and software houses some
impressive technical results have been achieved:

- Certification for manufacturers of PLC programming systems,
- Exchange format for user programs.

Certification
Certification tests demonstrate the standard compliance of programming systems
designed and implemented in accordance with IEC 61131-3.

For this purpose alist of requirements which a PLC programming system has to
fulfil in order to receive the PLCopen certificate of compliance with IEC 61131-3
was drawn up. The test is carried out by independent institutions with the aid of
test programs and inspections.

For every programming language of IEC 61131-3 a grading system consisting of
three levels exists with each level imposing stricter requirements. The
requirements of the standard (feature table) mentioned in Section 1.2 serve as the
basis of the classification. The feature table is used to determine which of the
requirements must be available at the respective level.

1) Base level. The basic structure of programs developed with the programming
system must be compatible with IEC 61131-3. The essential language el ements
of a programming language must be available.

2) Portability level. The selection of compulsory features is extended so that it is
possible to exchange real software components between certified programming
systems.

3) Full level. Further extension of the Portability level: inclusion of configuration
information in the exchange process.

This enables all PLC manufacturers to document the degree of conformity of each
of their languages to other IEC 61131-3-compliant systems.

By specifying a defined functionality, PLCopen guarantees a minimum com-
pliance. This makesit possible to compare systems with each other.

Several of these compliance classes have aready been established (IL Base Level,
ST Base Level, ASBase Level, IL Portability level, FBD Base Level). Thefirst IL
certifications for PLC programming systems were awarded in August 1994. The
remaining compliance classes are till in preparation.

1.3 The Organisation PLCopen 19

While the Base Level test is purely offling, i.e. the certification test programs
check the syntactical behaviour of the programming system, the Portability Level
includes additional online tests, which test the semantic behaviour of the pro-
gramming system in connection with a PLC. This ensures that the programming
system interprets |EC 61131-3 in the correct manner.

To what extent portability can be implemented in actual systems is a constant
subject of discussion and till remains to be seen. Limiting factors here are
hardware features of the manufacturer-specific PLCs, which often shape the
program architecture. Furthermore, the high functionality of IEC 61131-3 makes it
extremely difficult for programming systems and PLC operating systems to
implement all the functions. Small PLC manufacturers, on account of their target
market or the capabilities of their PLC families, will hardly require all the
properties of the standard — the implementation costs for parts of IEC 61131-3
are simply too great.

Thus the need to be able to exchange and/or port all IEC elements between all
programming systems is not the highest priority. It is more important that a certain
basic functionality should be available and that functionalities defined by the
standard should be implemented correctly.

In the final analysis the wishes and demands of the customers will give the ultimate
answer to al questions.

Exchange format for user programs

In order to be able to exchange user programs between two PLC programming
systems, both must be able to understand the same file format, read it in and
convert it into their own formet.

This exchange can be done by reading an ASCII file into the target system (as
long as an import/export interface is available) or by means of the copy/paste
function. In this case, the type definitions, data declarations and the code section
areread in.

For a secured exchange of a program source, information such as place of origin,
version, date, programmer's name etc. is important. As there are no rules or
regulations in the IEC 61131-3 standard concerning file format, PLCopen has
defined an ASCI|-based format for textual blocks (exchange format FxF).

Not only programs can be imported into other IEC 61131-3 systems. In large
applications, it is desirable to exchange data while a program is running. A special
data format is necessary here, too. Information such as place of origin and the
expiration date must be supplied with the data. PL Copen proposes data structures
which can, for example, be transmitted with the aid of the blocks described in IEC
61131-5.

P|Building Blocks of IEC 61131-3

This chapter explains the meaning and usage of the main language elements of the
IEC 61131-3 standard. These are illustrated by severa examples from real life,
with each example building upon the previous one.

The reader is introduced to the terms and ways of thinking of IEC 61131-3. The
basic ideas and concepts are explained clearly and comprehensively without dis-
cussing the formal language definitions of the standard itself [IEC 61131-3-94].

The first section of this chapter gives a compact introduction to the conceptual
range of the standard by means of an example containing the most important
language elements and providing an overview of the methodology of PLC pro-
gramming with |EC 61131-3.

Theterm “POU” (Program Organisation Unit) is explained in detail because it is
fundamental for a complete understanding of the new language concepts.

As the programming language Instruction List (1L, see ChapterElI. 1) is already well
known to most PLC programmers, it has been chosen as the basis for the examples
in this chapter .

Pl1 Introduction to the New Standard|

IEC 61131-3 not only describes the PLC programming languages themselves, but
also offers comprehensive concepts and guidelines for creating PLC projects.

The purpose of this section is to give a short summary of the important terms of
the standard without going into details. These terms are illustrated by a simple
example. More detailed information will be found in the subsequent sections and
chapters.

22 2 Building Blocks of IEC 61131-3

P]1.1 Structure of the building blocks|

POUs correspond to the Blocks in previous (conventional) programming systems.
POUs can call each other with or without parameters. As the name implies, POUs
are the smallest independent software units of a user program.

There are three types of POUs. Function (FUN), Function block (FB) and
Program (PROG), in ascending order of functionality. The main difference
between functions and function blocks is that functions always produce the same
result (function value) when called with the same input parameters, i.e. they have
no “memory”. Function blocks have their own data record and can therefore
“remember” status information (instantiation). Programs (PROG) represent the
“top” of a PLC user program and have the ability to access the I/Os of the PLC
and to make them accessible to other POUs.

IEC 61131-3 predefines the calling interface and the behaviour of frequently
needed standard functions (std. FUN) such as arithmetic or comparison functions,
aswell as standard function blocks (std. FB), such astimers or counters.

Declaration of variables

The IEC 61131-3 standard uses variables to store and process information.
Variables correspond to (global) flags or bit memories in conventional PLC
systems. However, their storage locations no longer need to be defined manually
by the user (as absolute or global addresses), but they are managed automatically
by the programming system and each possess a fixed data type.

IEC 61131-3 specifies several data types (Bool, Byte, Integer, ...). These differ,
for example, in the number of bits or the use of signs. It is also possible for the
user to define new data types. user-defined data types such as structures and
arrays.

Variables can aso be assigned to a certain I/O address and can be battery-
backed against power failure.

Variables have different forms. They can be defined (declared) outside a POU and
used program-wide, they can be declared as interface parameters of a POU, or they
can have a local meaning for a POU. For declaration purposes they are therefore
divided into different variable types. All variables used by a POU have to be
declared in the declaration part of the POU.

The declaration part of a POU can be written in textual form independently of
the programming language used. Parts of the declaration (input and output
parameters of the POU) can also be represented graphically.

2.1 Introduction to the New Standard 23

VAR_INPUT (* Input variable *)
ValidFlag : BOOL; (* Binary value *)

END_VAR

VAR_OUTPUT (* Output variable *)
RevPM : REAL; (* Floating-point value *)

END_VAR

VAR RETAIN (* Local variable, battery-backed *)
MotorNr CINT; (* Signed integer *)
MotorName : STRING [10]; (* String of length 10 *)
EmStop AT %I1X2.0 : BOOL; (* Input bit 2.0 of /0 *)

END_VAR

Example Elﬂfxample of typical variable declarations of a POU

Example shows the variable declaration part of a POU. A signed integer
variable (16 bits incl. sign) with name MotorNr and a text of length 10 with name
MotorName are declared. The binary variable EmStop (emergency stop) is
assigned to the I/O signal input 2.0 (using the keyword “AT"). These three
variables are known only within the corresponding POU, i.e. they are “local”.
They can only be read and atered by this POU. During a power failure they retain
their value, asisindicated by the qualifier “RETAIN”. The value for input variable
ValidFlag will be set by the calling POU and have the Boolean values TRUE or
FALSE. The output parameter returned by the POU in this example is the floating-
point value RevPM.
The Boolean values TRUE and FAL SE can be also be indicated by “1” and “0”.

Code part of a POU
The code part, or instruction part, follows the declaration part and contains the
instructions to be processed by the PLC.

A POU is programmed using either the textual programming languages
Instruction List (IL) and Structured Text (ST) or the graphical languages Ladder
Diagram (LD) and Function Block Diagram (FBD). IL is a programming language
closer to machine code, whereas ST is a high-level language. LD is suitable for
Boolean (binary) logic operations. FBD can be used for programming both
Boolean (binary) and arithmetic operations in graphical representation.

24 2 Building Blocks of IEC 61131-3

%IX23.5 EmStop Motor

I

Button

e

Ladder Diagram

%I1X23.5
Button
EmStop
Motor

Instruction List

FlipFlop
SR

VarOut
Jarout

S1 Q

—

Function Block Diagram

FlipFlop (S1 := (%IW3 >= %MW3),
R :=Varin);

VarOut := FlipFlop.Q1;

Structured Text

Figure @1|}5| mple examples of the programming languages LD, FBD, IL and ST.
The examplesin LD and IL are equivaent to one another, as arethosein FBD and ST.

Additionally, the description language Sequential Function Chart (SFC) can be
used to describe the structure of a PLC program by displaying its sequential and
parallel execution. The various subdivisions of the SFC program (steps and
transitions) can be programmed independently using any of the IEC 61131-3

programming languages.

2.1 Introduction to the New Standard 25

|—||—||— - t1 <3

S1 S2
—ﬂ—-tz T
S3

=T"t5 Sequential Function Chart

Figure Elz.ﬂ_%chemati ¢ example of structuring using SFC. The execution parts of the steps
(S0 to S3) and the transitions (t1 to t5) can be programmed using any other programming
language.

FigureR.2 shows an SFC example: Steps SO, S1 and S3 are processed sequentially.
S2 can be executed aternatively to S1. Transitions t1 to t5 are the conditions
which must be fulfilled before proceeding from one step to the next.

Pl1.2 Introductory examplewritten in IL |

An example of an IEC 61131-3 program is presented in this section. Figure
shows its POU calling hierarchy in tree form.

This example is not formulated as an executable program, but smply serves to
demonstrate POU structuring.

26 2 Building Blocks of IEC 61131-3

MotorControl

program

MotStart

function block

[MotAccel LOG
function standard function

MotBrake

function block

Figure pJ3.[Falling hierarchy of POUs in the example

The equivalent IL representation is shown in Exampl e@

__——— Named POU type
PROGRAM MotorContro

\— Declaration part

VAR_INPUT (* input variable *)
MaxRPM CINT;

END_VAR

VAR (* local variable *)
Start : MotStart;
Braking : MotBrake;

END_VAR

(* FB call *)

CAL Start (RPM := MaxRPM)
LD Start.running

CAL Braking (* FBcall*)

\— Code part

END_PROGRAM
- T —————— Endof POU

Example Elz[beclaration of the program MotorControl from Figure together with
corresponding code parts in IL. Comments are represented by the use of

brackets: “(* ... *)".

2.1 Introduction to the New Standard 27

FUNCTION_BLOCK MotStart (* function block *)
VAR_INPUT RPM: INT; END_VAR (* declaration of RPM*)
VAR_OUTPUT running: BOOL; END_VAR (* declaration of running*)
LD RPM
MotAccel 100 (* function call *)

END_FUNCTION_BLOCK

FUNCTION_BLOCK MotBrake (* function block *)

END_FUNCTION_BLOCK

FUNCTION MotAccel : REAL (* function *)

VAR_INPUT Paraml, Param2: INT; END_VAR (* declaration of variables*)
LD Param2
LOG (* invoc. of Std. FUN LOG *)
ST MotAccel

END_FUNCTION

Example [2]3][Jrhe three subprograms of Fig.[2.3 in IL. LOG (logarithm) is a predefined
standard function of IEC 61131-3.

MotorControl is the main program. When this program is started, the variable RPM
is assigned an initial value passed with the call (as will be seen later). This POU
then calls the block Start (MotStart). This POU in turn calls the REAL function
MotAccel with two input parameters (RPM and 100). This then calls LOG — the
IEC 61131 standard function “Logarithm”. After processing Start (MotStart),
MotorControl is activated again, evaluates the result running and then calls Braking,
(MotBrake).

As shown in Example[2.3, the function blocks MotStart and MotBrake are not
called directly using these names, but with the so-called “instance names’ Start
and Braking respectively.

P|1.3 PLC assignment|

Each PLC can consist of multiple processing units, such as CPUs or special
processors. These are known as resources in |[EC 61131-3. Several programs can
run on one resource. The programs differ in priority or execution type
(periodic/cyclic or by interrupt). Each program is associated with a task, which
makes it into a run-time program. Programs may also have multiple associations
(instantiation).

28 2 Building Blocks of IEC 61131-3

Before the program described in Examples .2 and 2.3 can be loaded into the PLC,
more information is required to ensure that the associated task has the desired
properties:

- Onwhich PLC type and which resource is the program to run?

- How isthe program to be executed and what priority should it have?

- Do variables need to be assigned to physical PLC addresses?

- Are there global or external variable references to other programs to be
declared?

This information is stored as the configuration, as illustrated textually in Example

R.4land graphically in Figure

CONFIGURATION MotorCon
VAR_GLOBAL Trigger AT %IX2.3 : BOOL; END_VAR
RESOURCE Res_1 ON CPUO001
TASKT_1 (INTERVAL := t#80ms, PRIORITY :=4),
PROGRAM MotR WITH T_1 : MotorControl (MaxRPM := 12000);
END_RESOURCE
RESOURCE Res_2 ON CPU002
TASK T_2 (SINGLE := Trigger, PRIORITY := 1);
PROGRAM MotP WITH T_2 : MotorProg (...);
END_RESOURCE
END_CONFIGURATION

Example E|4[|Assignment of the programs in Example to tasks and resources in a
“configuration”

2.1 Introduction to the New Standard 29

Res_1 Res_2

CPU001 CPU002

< T <rTTEEE
o [sEE o UsaE
=] =]

Task: 1 cyclic Task: QO cyclic

QO interrupt 1% interrupt

O high priority 1%f high priority

IR low priority Q low priority

Y 7

Program MotorControl Program MotorProg

MotStart MotBrake
MotAccel LOG

Allocation of hardware addresses
global & access variables

CONFIGURATION MotorCon

Figure E4|]\ss1 gnment of the programs of a motor control system MotorCon to tasksin
the PLC “configuration”. The resources (processors) of the PLC system execute the
resulting run-time programs.

Figure continues Example Program MotorControl runs together with its
FUNs and FBs on resource CPUO01. The associated task specifies that
MotorControl should execute cyclically with low priority. Program MotorProg runs
here on CPU002, but it could also be executed on CPU0O1 if this CPU supports
multitasking.

The configuration is also used for assigning variables to 1/Os and for managing
global and communication variables. Thisis also possible within a PROGRAM.

A PLC project consists of POUSs that are either shipped by the PLC manufacturer
or created by the user. User programs can be used to build up libraries of tested
POUs that can be used again in new projects. |EC 61131-3 supports this aspect of
software re-use by stipulating that functions and function blocks have to remain
“universal”, i.e. hardware-independent, as far as possible.

After this short summary, the properties and special features of POUs will now be
explained in greater detail in the following sections.

30 2 Building Blocks of IEC 61131-3

P|2 The Program Organisation Unit (POU)|

IEC 61131-3 calls the blocks from which programs and projects are built Program
Organisation Units (POUs). POUs correspond to the program blocks, organisation
blocks, sequence blocks and function blocks of the conventional PLC program-
ming world.

One very important goal of the standard is to restrict the variety and often
implicit meanings of block types and to unify and simplify their usage.

(()

OB

Organisation
block

PROGRAM

PB

Program
block

Main program FUNCTION
BLOCK

Function
block

SB

Sequence
block

FB

Function
block

- J

Block types used in DIN 19239 POUs in IEC 61131-3

FUNCTION

Function

Figure EB.[IEVOI ution from previous block types (e.g. German DIN 19239) to the POUs of
IEC 61131-3

As Figure shows, |EC 61131-3 reduces the different block types of PLC
manufacturers to three unified basic types. Data blocks are replaced by FB data
memories (“instances’, see below) or global multi-element variables (see also
Chapter 3).

The following three POU types or “block types’ are defined by the new
standard:

2.2 The Program Organisation Unit (POU) 31

POU type keyword meaning

Program PROGRAM Main program including assignment to 1/O,
global variables and access paths

Function FUNCTION_BLOCK | Block with input and output variables; thisisthe

block most frequently used POU type
Function FUNCTION Block with function value for extension of the
basic PLC operation set

Table E]l.ﬂl’he three POU types of IEC 61131-3 with their meanings

These three POU types differ from each other in certain features:

- Function (FUN). POU that can be assigned parameters, but has no static
variables (without memory), which, when invoked with the same input
parameters, always yields the same result as its function value (output).

- Function block (FB). POU that can be assigned parameters and has static
variables (with memory). An FB (for example a counter or timer block), when
invoked with the same input parameters, will yield values which also depend
on the state of itsinternal (VAR) and external (VAR_EXTERNAL) variables,
which are retained from one execution of the function block to the next.

- Program (PROG). This type of POU represents the “main program”. All
variables of the whole program, that are assigned to physical addresses (for
example PLC inputs and outputs) must be declared in this POU or above it
(Resource, Configuration). In all other respectsit behaves like an FB.

PROG and FB can have both input and output parameters. Functions, on the other
hand, have input parameters and a function value as return value. These properties
were previously confined to “function blocks”.

The IEC 61131-3 FUNCTION_BLOCK with input and output parameters
roughly corresponds to the conventional function block. The POU types
PROGRAM and FUNCTION do not have direct counterparts in blocks as defined
in previous standards, e.g. DIN 19239.

A POU is an encapsulated unit, which can be compiled independently of other
program parts. However, the compiler needs information about the calling
interfaces of the other POUs that are called in the POU (“prototypes’). Compiled
POUs can be linked together later in order to create a complete program.

The name of a POU is known throughout the whole project and may therefore only
be used once. Local subroutines as in some other (high-level) languages are not
permitted in IEC 61131-3. Thus, after programming a POU (declaration), its name
and its calling interface will be known to al other POUs in the project, i.e. the
POU name is always global.

32 2 Building Blocks of IEC 61131-3

This independence of POUs facilitates extensive modularization of automation
tasks as well as the re-use of already implemented and tested software units.

In the following sections the common properties of the different types of POUs
will first be discussed. The POU types will then be characterised, the calling
relationships and other properties will be described, and finally the different types
will be summarised and compared.

P|3 Elementsof a POU |

A POU consists of the elementsiillustrated in Figurep.6]

- POU type and name (and data type in the case of functions)
- Declaration part with variable declarations
- POU body with instructions.

PROGRAM PROG name FUNCTION_BLOCK FB name FUNCTION FUN name Data type

Interface variables

local variables Declaration part

Instructions

(POU body) Code part
END_PROGRAM END_FUNCTION_BLOCK END_FUNCTION

Figure Ee.ﬂThe common structure of the three POU types Program (left), Function Block
(centre) and Function (right). The declaration part contains interface and local variables.

Declarations define all the variables that are to be used within a POU. Here a
distinction is made between variables visible from outside the POU (POU
interface) and the local variables of the POU. These possibilities will be explained
in the next section and in more detail in Chapter 3.

Within the code part (body) of a POU the logical circuit or algorithm is pro-
grammed using the desired programming language. The languages of IEC 61131-3
are presented and explained in Chapter 4.

Declarations and instructions can be programmed in graphical or textual form.

P|3.1 Example}

2.3 Elements of a POU

The elements of aPOU areillustrated in Examplep.5]

FUNCTION_BLOCK FB name

Interface variables

Local variables

FUNCTION_BLOCK NextState

33

Instructions
(POU body)

END_FUNCTION_BLOCK

VAR_INPUT Varln : BOOL; END_VAR (*input*)

VAR_OUTPUTVarOutl : BYTE; (* outputs *)
VarOut2 : BOOL; END_VAR

VAR VarLocal : BYTE; END_VAR (* state value *)

LD Varln

LD VarlLocal

ST VarOutl

ST VarOut2

END_FUNCTION_BLOCK

ExampIeSI]EI ements of a POU (left) and example of afunction block in IL (right). The
FB contains the input parameter Varln as well as the two return values VarOutl and
VarOut2. VarLocal isaloca variable.

The function block NextState written in IL contains the input parameter Varin, the
two return values VarOutl and VarOut2 and the local variable VarLocal. In the FB
body the IL operators LD (Load) and ST (Store) are used.

FUNCTION_BLOCK NextState

BOOL—

Varin

VarOutl

VarOut2

END_FUNCTION_BLOCK

— BYTE

— BOOL

ExampIeGEbraphical representation of the caling interface of FB NextState in

Example

When using the graphical representation of the calling interface, local FB variables

such as VarlLocal are not visible.

34 2 Building Blocks of IEC 61131-3

P|3.2 Declaration part|

In 1EC 61131-3 variables are used for initialising, processing and storing user data.
The variables have to be declared at the beginning of each POU, i.e. their
assignment to a specific data type (such as BY TE or REAL) is made known.

Other attributes of the variables, such as battery backup, initia values or
assignment to physical addresses, can also be defined during declaration.

As shown by Example, the declaration of POU variables is divided into
separate sections for the different variable types. Each declaration block
(VAR_*...END_VAR) corresponds to one variable type and can contain one or
more variables. As Example shows, the order and number of blocks of the
same variable type can be freely determined or can depend on how the variables
are used in a particular programming system.

(* Local variable *)

VAR VarLocal : BOOL; END_VAR (* local Boolean variable *)
(* Calling interface: input parameters *)
VAR_INPUT Varln : REAL; END_VAR (* input variable *)

VAR_IN_OUT VarinOut : UINT; END_VAR (* input and output variable *)

(* Return values: output parameters *)

VAR_OUTPUT VarOut: INT; END_VAR (* output variable *)

(* Global interface: global/external variables and access paths *)

VAR_EXTERNAL VarGlob : WORD; END_VAR (* external from other POU *)
VAR_GLOBAL VarGlob : WORD; END_VAR (* global for other POUs *)
VAR_ACCESS VarPath : WORD; END_VAR (* access path of configuration *)

Example EI?[IExampleﬁ of the declarations of different variable types.

(* Declaration block 1 *)

2.3 Elements of a POU

VAR VarlLocall, VarLocal2, VarLocal3: BOOL; END_VAR

(* Declaration block 2 *)

VAR_INPUT Varinl : REAL; END_VAR
(* Declaration block 3 *)
VAR_OUTPUT VarOut : INT,; END_VAR
(* Declaration block 4 *)
VAR VarLocal4, VarLocal5 : BOOL; END_VAR
(* Declaration block 5 *)
VAR_INPUT Varin2, Varin3 : REAL; END_VAR
(* Declaration block 6 *)
VAR_INPUT Varin4 : REAL,; END_VAR

35

ExampleElS.DExampl&s of declaration blocks: the order and number of the blocks is not
specified in IEC 61131-3.

Typesof variablesin POUSs.
As shown by Table, different types of variables may be used depending on the

POU type:

Variabletype Permitted in:

PROGRAM FUNCTION_BLOCK FUNCTION

VAR yes yes yes
VAR _INPUT yes yes yes
VAR OUTPUT yes yes no
VAR IN_OUT yes yes no
VAR _EXTERNAL yes yes no
VAR GLOBAL yes no no
VAR_ACCESS yes no no

TablepJ2 [V ariable types used in the three types of POU

As Table@ shows, all variable types can be used in programs. Function blocks
cannot make global variables available to other POUs. This is only permitted in
programs, resources and configurations. FBs access global data using the variable
type VAR_EXTERNAL.

Functions have the most restrictions because only local and input variables are
permitted in them. They return their calculation result using the function return

value.

Except for local variables, all variable types can be used to import data into and
export data from a POU. This makes data exchange between POUs possible. The
features of this POU interface will be considered in more detail in the next section.

Characteristics of the POU interface

36 2 Building Blocks of IEC 61131-3

The POU interfaces, as well as the local data area used in the POU, are defined by
means of assigning POU variables to variable types in the declaration blocks. The
POU interface can be divided into the following sections:

- Cadlling or invocation interface: formal parameters (input and input/output
parameters)

- Return values: output parameters or function return values

- Global interface with global/external variables and access paths.

The calling interface and the return values of a POU can also be represented
graphically in the languages LD and FBD.

The variables of the calling interface are also called formal parameters. When
caling a POU the formal parameters are replaced with actual parameters, i.e.
assigned actual (variable) values or constants.

In Example FB MotStart has only one formal parameter RPM, which is given
the value of the actual parameter MaxRPM in Example , and it also has the
output parameter running. The function MotAccel has two formal parameters (one
of which is assigned the constant 100) and returns its result as the function return
value

Thisis summarised by Table[.3]

Variabletypes Remarks
Calling interface VAR_INPUT, VAR_IN_OUT Input parameters, can
(formal parameters) also be graphically
displayed
Return values VAR_OUTPUT Qutput parameters, can
also be graphically
displayed
Global interface VAR_GLOBAL, VAR_EXTERNAL, | Globa data
VAR_ACCESS
L ocal values VAR POU internal data

Table ES ariable types for interface and local data of a POU. See the comments in
Example

Theformal parametersand return values of a POU
The calling interface and return value differ in their method of access and in their
accessrights (see also [IEC TR3-94]).

Formal input parameter (VAR_INPUT): Actual parameters are passed to the
POU as values, i.e. the variable itself is not used, but only a copy of it. This

2.3 Elements of a POU 37

ensures that this input variable cannot be changed within the called POU. This
concept is also known as call-by-value.

Formal input/output parameter (VAR _IN_OUT): Actua parameters are passed
to the called POU in the form of a pointer to their storage location, i.e. the
variable itself is used. It can thus be read and changed by the called POU. Such
changes have an automatic effect on the variables declared outside the called POU.
This concept is also known as call-by-reference.

By working with references to storage locations this variable type provides
pointers like those used in high-level languages like C for return values from
subroutines.

Formal output parameters, return values (VAR_OUTPUT) are not passed to
the called POU, but are provided by that POU as values. They are therefore not
part of the calling interface. They appear together with VAR _INPUT and
VAR _IN_OUT in graphical representation, but in textual languages such as IL or
ST their values are read after calling the POU.

The method of passing to the calling POU is also return-by-value, allowing the
values to be read by the calling instance (FB or PROG). This ensures that the
output parameters of a POU are protected against changes by a calling POU.
When a POU of type PROGRAM is called, the output parameters are provided
together with the actual parameters by the resource and assigned to appropriate
variables for further processing (see examplesin Chapter 6).

If a POU call uses complex arrays or data structures as variables, the use of
VAR _IN_OUT results in more efficient programs, as it is not the variables
themselves (VAR _INPUT and VAR _OUTPUT) that have to be copied at run
time, but only their respective pointers. However such variables are not protected
against (unwelcome) manipulation by the called POU.

External and internal accessto POU variables

Formal parameters and return values have the special property of being visible
outside their POU: the calling POU can (but need not) use their names explicitly
for setting input values.

This makes it easier to document the POU calling interface and parameters may
be omitted and/or their sequence may be altered. In this context input and output
variables are also protected against unauthorised reading and writing.

Table @ summarises all variable types and their meaning. Access rights are
given for each variable type, indicating whether the variable:

- isvisibleto the calling POU (“external”) and can be read or written to there
- can beread or written to within the POU (“internal”) in which it is defined.

38 2 Building Blocks of IEC 61131-3

Variabletype Accessrights? Explanation
externa | interna
VAR - RW | Alocal variableisonly visible within its POU and
Local Variables can be processed only there.
VAR_INPUT W R An input variableis visible to the calling POU and
Input Variables may be written to (changed) there. It may not be
changed within its own POU.
VAR_OUTPUT R RW | Anoutput variableis visible to the calling POU and
Output Variables may only be read there. It can be read and written to
within its own POU.
VAR_IN_OUT RW RW [Aninput/output variable possesses the combined
Input and Output features of VAR_INPUT and VAR_OUTPUT: itis
Variables visible and may be read or changed within or

outside its POU.

VAR_EXTERNAL RW RW | Anexternal variable must be declared by another
External Variables POU as global and isvisible, and can be read and
written to by all POUs. It may be changed within a
POU just like alocal variable and its changed value
will be effectiveimmediately for all POUs using it.
VAR GLOBAL RW RW A global variable is declared within a POU and can
Global Variables be read and written to there by all other POUs (as
external variable). It may be changed within a POU
as alocal variable and its new value will be effective
immediately for all POUs using it.
VAR_ACCESS RW RW | Global variable of configurations as communication
Access Paths channel between components (resources) of
configurations (see also Chapter 6). It can be used
like a global variable within a POU.

a W=Write, R=Read, RW=Read and Write

Table E|4.|]The meaning of the variable types. The left-hand column contains the keyword
of each variable type in bold letters. In the “ Access rights’ column the read/write rights are
indicated for the calling POU (external) and within the POU (internal) respectively.

IEC 61131-3 provides extensive access protection for input and output variables,
as shown in Tabl e for VAR_INPUT and VAR_OUTPUT: input variables may
not be changed within their POU, and output parameters may not be changed
outside.

The information in this section about the declaration part of a POU is particularly
relevant for function blocks. Section will discuss this again when explaining
FB instantiation.

The following examples show both external (calling the POU) and internal (within
the POU) access to formal parameters and return values of POUS:

FUNCTION_BLOCK FBTwo FUNCTION_BLOCK FBOne

2.3 Elements of a POU 39

VAR_INPUT VAR ExampleFB : FBTwo; END_VAR
Varln . BYTE;

END_VAR

VAR_OUTPUT
VarOut : BYTE;

END_VAR

VAR VarLocal : BYTE; END_VAR

LD 44

LD Varln ST ExampleFB.Varin

AND VarlLocal CAL ExampleFB (* FB call *)
ST VarOut LD ExampleFB.VarOut
END_FUNCTION_BLOCK END_FUNCTION_BLOCK

ExampleElg.[l nternal access (on the left) and external access (on the right) to the formal
parameters Varln and VarOut.

In Example@ FBOne calls block ExampleFB (described by FBTwo). The input
variable Varln is assigned the constant 44 as actual parameter, i.e. this input
variable is visible and initialised in FBOne. VarOut is also visible here and can be
read by FBOne. Within FBTwo Varin can be read (e.g. by LD) and VarOut can be
written to (e.g. using the instruction ST).

Further features and specidlities of variables and variable types will be explained
in Section[3l4.

P|3.3 Code part|

The instruction or code part (body) of a POU immediately follows the declaration
part and contains the instructions to be executed by the PLC. IEC 61131-3 pro-
vides five programming languages (three of which have graphical representation)
for application-oriented formulation of the control task.

As the method of programming differs strongly between these languages, they
are suitable for different control tasks and application areas. Here is a general
guide to the languages:

SFC | Sequential Function Chart: For bresking down the control task into parts
which can be executed sequentially and in parallel, aswell asfor controlling
their overall execution. SFC very clearly describes the program flow by
defining which actions of the controlled process will be enabled, disabled or
terminated at any onetime. |EC 61131-3 emphasi ses the importance of SFC as
an Aid for Structuring PLC programs.

LD Ladder Diagram: Graphical connection (“circuit diagram”) of Boolean

40 2 Building Blocks of IEC 61131-3

variables (contacts and coils), geometrical view of acircuit similar to earlier
relay controls. POUs written in LD are divided into sections known as
networks.

FBD | Function Block Diagram: Graphical connection of arithmetic, Boolean or other
functional elements and function blocks. POUs written in FBD are divided into
networks like those in LD. Boolean networks can often be represented in LD
and vice versa.

IL Instruction List: Low-level machine-oriented language offered by most of the
programming systems

ST Structured Text: High-level language (similar to PASCAL) for control tasks as
well as complex (mathematical) calculations.

Table IZ.S.lFeatur&s of the programming languages of IEC 61131-3

In addition, the standard explicitly allows the use of other programming languages
(e.g. C or BASIC), which fulfil the following basic requirements of PLC pro-
gramming:

- The use of variables must be implemented in the same way as in the other
programming languages of 1EC 61131-3, i.e. compliant with the declaration
part of a POU.

- Cadlls of functions and function blocks must adhere to the standard, especially
calls of standard functions and standard function blocks.

- There must be no inconsistencies with the other programming languages or
with the structuring aid SFC.

Details of these standard programming languages, their individual usage and their
representation are given in Chapter .

|2.4 The Function BIockI

Function blocks are the main building blocks for structuring PLC programs. They
are called by programs and FBs and can themselves call functions as well as other
FBs.

In this section the basic features of function blocks will be explained. A detailed
example of an FB can be found in Appendix C.

The concept of the “instantiation of FBS’ is of great importance in IEC 61131-3

and is an essentia distinguishing criterion between the three POU types. This
concept will therefore be introduced before explaining the other features of POUSs.

|2.4.1 I nstances of function bIocksl

2.4 The Function Block 41

What isan “instance” ?
The creation of variables by the programmer by specifying the variable's name and
datatype in the declaration is called instantiation.

In the following Example the variable Valve is an instance of data type
BOOL:

Valve BOOL; (* Boolean variable *)
Name of variable data type
Mcﬁ)il : MotorType; (* FB instance *)

Name of FB instance FB type (user-defined)

Example @10]]Dec|arati on of avariable as an “instance of a data type” (top). Declaration
of an FB “variable” as an “instance of a user-defined FB type” (bottom).

Function blocks also are ingtantiated like variables: In Example the FB
instance Motorl is declared as an instance of the user-defined function block (FB
type) MotorType in the declaration part of a POU. After instantiation an FB can be
used (as an instance) and called within the POU in which it is declared.

This principle of instantiation may appear unusual at first sight but, in fact, it is
nothing new.

Up until now, for example, function blocks for counting or timing, known for
short as counters and timers respectively, were mostly defined by their type (such
as direction of counting or timing behaviour) and by a humber given by the user,
e.g. Counter “C19".

Instead of this absolute number the standard IEC 61131-3 requires a (symbolic)
variable name combined with the specification of the desired timer or counter type.
This has to be declared in the declaration part of the POU. The programming
system can automatically generate internal, absolute numbers for these FB
variables when compiling the POU into machine code for the PLC.

With the aid of these variable names the PLC programmer can use different
timers or counters of the same type in a transparent manner and without the need to
check name conflicts.

By means of instantiation IEC 61131-3 unifies the usage of manufacturer-
dependent FBs (typically timers and counters) and user-defined FBs. Instance
names correspond to the symbolic hames or so-called symbols used by many PLC
programming systems. Similarly, an FB type correspondsto its calling interface. In
fact, FB instances provide much more than this: “Structure” and “Memory” for
FBswill be explained in the next two subsections.

42 2 Building Blocks of IEC 61131-3

The term “function block” is often used with two dightly different meanings: it
serves as a synonym for the FB instance name as well as for the FB type (= name
of the FB itself). In this book “function block” means FB type, while an FB
instance will always be explicitly indicated as an instance name.

Example shows a comparison between the declarations of function blocks
(here only standard FBs) and variables:

VAR
FillLevel 1 UINT,; (* unsigned integer variable *)
EmStop : BOOL; (* Boolean variable *)
Time9 : TON; (* timer of type on-delay *)
Timel3 : TON; (* timer of type on-delay *)
CountDown : CTD; (* down-counter *)
GenCounter : CTUD; (*up-down counter *)
END_VAR

Example 11|:|Examples of variable declaration and instantiation of standard function
blocks (bold).

Although in this example Time9 and Timel3 are based on the same FB type
(TON) of atimer FB (on-delay), they are independent timer blocks which can be
separately called as instances and are treated independently of each other, i.e. they
represent two different “timers”.

FB instances are visible and can be used within the POU in which they are
declared. If they are declared as global, al other POUs can used them as well
(with VAR_EXTERNAL).

Functions, on the other hand, are always visible project-wide and can be called
from any POU without any further need of declaration. Similarly FB types are
known project-wide and can be used in any POU for the declaration of instances.

The declaration and calling of standard FBs will be described in detail in
Chapter 5. Their usage in the different programming languages is explained in
Chapter 4.

Instance means “structure’.
The concept of instantiation, as applied in the examples of timer or counter FBs,
results in structured variables, which:

- describe the FB calling interface like a data structure,
- contain the actual status of atimer or counter,
- represent a method for calling FBs.

This allows flexible parameter assignment when calling an FB, as can be seen
below in the example of an up/down counter:

2.4 The Function Block 43

VAR
Counter : CTUD; (* up/down counter *)
END_VAR

Example P12 [Peclaration of an up/down counter with IEC 61131-3
After this declaration the inputs and outputs of this counter can be accessed using a

data structure defined implicitly by IEC 61131-3. In order to clarify this structure
Example.13 shows it in an alternative representation.

TYPE CTUD: (* data structure of an FB instance of FB type CTUD *)
STRUCT

(* inputs *)

CU: BOOL; (* count up *)
CD: BOOL; (* count down *)
R : BOOL; (*reset?*)

LD : BOOL; (*load *)

PV : INT; (* preset value *)

(* outputs *)
: BOOL; (* output up *)

QD: BOOL; (* output down *)
CV: INT; (* current value *)
END_STRUCT;
END_TYPE

Example R]13[JAlternative representation of the data structure of the up/down counter
(standard FB) in ExampleEglp

The data structure in Example shows the formal parameters (calling interface)
and return values of the standard FB CTUD. It represents the caller's view of the
FB. Local or external variables of the POU are kept hidden.

This data structure is managed automatically by the programming or run-time
system and is easy to use for assigning parameters to FBs, as shown in Example

P.14]in the programming language IL:

LD 34

ST Counter.PV (* preset count value *)

LD %I1X7.1

ST Counter.CU (* count up *)

LD %M3.4

ST Counter.R (* reset counter *)

CAL Counter (*invocation of FB with actual parameters *)

LD Counter.CV (* get current count value *)

Example E|14.|]>arameteriwtion and invocation of the up/down counter in Example

44 2 Building Blocks of IEC 61131-3

In this example the instance Counter is assigned the parameters 34, %IX7.1 and
%M3.4, before Counter is called by means of the instruction CAL (shown here in
bold type). The current counter value can then be read.

As seen in Example[2.14, the inputs and outputs of the FB are accessed using the
FB instance name and a separating period. This procedure is also used for struc-
ture elements (see Section B5.2).

Unused input or output parameters are given initial values that can be defined
within the FB itself.

In Section. E.1.4 further methods of calling FBsin IL by means of their instance
names are shown.

Instance means “memory”.

When several variable names are declared for the same FB type a sort of “FB data
copy” is created for each instance in the PLC memory. These copies contain the
values of the local (VAR) and the input or output variables (VAR _INPUT,
VAR_OUTPUT), but not the values for VAR_IN_OUT (these are only pointersto
variables, not the values themselves) or VAR_EXTERNAL (these are globa
variables).

This means that the instance can store local data values and input and output
parameters over severa invocations, i.e. it has a kind of “memory”. Such a
memory is important for FBs such as flip-flops or counters, as their behaviour is
dependent on the current status of their flags and counter values respectively.

All variables of this memory are stored in a memory area which is firmly
assigned to this one FB instance (by declaration). This memory area must therefore
be static. This also means that the stack cannot be used in the usual way to manage
local temporary variables!

Particularly in the case of function blocks which handle large data areas such as
tables or arrays, this can lead to (unnecessarily) large static memory requirements
for FB instances.

Therefore, in addition to the static data area provided by “VAR ... END_VAR",
programming systems sometimes use dynamic data areas declared with
“VAR_DYN ... END_VAR”. These can be assigned to the stack mechanism on the
PLC in order to save memory. By using such dynamic data PLC programmers may
optimise the memory needs of their temporary data.

Furthermore, large numbers of input and output parameters can lead to memory-
consuming FB instances. The use of VAR_IN_OUT instead of VAR_INPUT and
VAR_OUTPUT respectively can help reduce memory requirements.

In Section the read/write restrictions on the input and output variables of
POUs were detailed. Thisis of particular importance for FB instances:

- Input parameters (formal parameters) of an FB instance maintain their values
until the next invocation. If the called FB could change its own input variables,
these values would be incorrect at the next call of the FB instance, and this
would not be detected by the calling POU.

2.4 The Function Block 45

- Similarly, output parameters (return values) of an FB instance maintain their
values between calls. Allowing the calling POU to alter these values would
result in the called FB making incorrect assumptions about the status of its own
outputs.

Like normal variables, FB instances can also be made retentive by using the
keyword RETAIN, i.e. they maintain their local status information and the values
of their calling interface during power failure.

Finally, the relationship between FB instances and conventional data blocks (DB)
will be explained.

Relationship between FB instances and data blocks.

Before calling a conventional FB, which has no local data memory (besides
formal parameters), it is common practice to activate a data block containing, for
example, recipe or FB-specific data. Within the FB the data block can also serve
asalocal data memory area. This means that programmers can use a conventional
FB with individual “instance data’, but have to ensure the unambiguous
assignment of the data to the FB themselves. This datais also retained between FB
cals, because the data block is a global “shared memory ared’, as shown in
Example.15]

VAR_GLOBAL
Ju DB 14 (* global DB *) FB_14 : FB_Ex; (*global instance *)
END_VAR
Ju FB 14 (*FBcall *) CAL FB_14 (* invocation of FB instance*)
a) Conventional DB/FB pair b) FB instancein IEC 61131-3

Example PJ15[JThe use of a conventional DB/FB pair is similar to an FB instance as
defined in IEC 61131-3.

This topic will be discussed in more detail in Section[7]8.

This type of instantiation is restricted to function blocks and is not applicable to
functions (FUNCTION).

Programs are similarly instantiated and called as instances in the Configuration
as the highest level of the POU hierarchy. But this (more powerful) kind of
instance differs from that for FBs, in that it leads to the creation of run-time
programs by association with different tasks. Thiswill be described in Chapter 6.

46 2 Building Blocks of IEC 61131-3

Pl4.2 Re-usable and object-oriented FBs]|

Function blocks are subject to certain restrictions, which make them re-usable in
PLC programs:

- The declaration of variables with fixed assignment to PLC hardware addresses
(see also Chapter 3: “directly represented variables’: %Q, %l, %M) as “local”
variables is not permitted in function blocks. This ensures that FBs are
independent of specific hardware. The usage of PLC addresses as global
variablesin VAR_EXTERNAL is, however, not affected.

- The declaration of access paths of variable type VAR _ACCESS (see aso
Chapter 3) or globa variables with VAR _GLOBAL is aso not permitted
within FBs. Global data, and thus indirectly access paths, can be accessed by
means of VAR_EXTERNAL.

- Externa data can only be passed to the FB by means of the POU interface
using parameters and external variables. There is no “inheritance’, as in some
other programming languages.

As aresult of these features, function blocks are also referred to as encapsulated,
which indicates that they can be used universally and are free from unwelcome
side effects during execution - an important property for parts of PLC programs.
Local FB data and therefore the FB function do not directly rely on global
variables, 1/0 or system-wide communication paths. FBs can manipulate such data
areas only indirectly viatheir (well-documented) interface.

The FB instance model with the properties of “structure” and “memory” was
introduced in the previous section. Together with the property of encapsulation for
re-usability a very new view of function blocks appears. This can be summarised
asfollows:

“A function block is an independent, encapsulated data structure

with a defined algorithm working on this data.”

The algorithm is represented by the code part of the FB. The data structure corres-
ponds to the FB instance and can be “called”, something which is not possible with
normal data structures. From each FB type any number of instances can be
derived, each independent of the other. Each instance has a unique name with its
own data area.

Because of this, IEC 61131-3 considers function blocks to be object-oriented.
These features should not, however, be confused with those of today’s modern
“object-oriented programming languages (- OOP)” such as, for example, C++
with its class hierarchy!

To summarise, FBs work on their own data area containing input, output and
local variables. In previous PLC programming systems FBs usually worked on
global data areas such as flags, shared memory, 1/0 and data blocks.

2.5 The Function 47

Pl4.3 Types of variablesin FBs]|

A function block can have any number of input and output parameters, or even
none at al, and can use local aswell as external variables.

In addition or as an aternative to making a whole FB instance retentive, local or
output variables can also be declared as retentive within the declaration part of the
FB.

The values of input or input/output parameters cannot be declared retentive in
the FB declaration part (RETAIN) as these are passed by the calling POU and
have to be declared retentive there.

For VAR_IN_OUT it should be noted that the pointers to variables can be
declared retentive in an instance using the qualifier RETAIN. The corresponding
values themselves can, however, be lost if they are not also declared as retentive in
the calling POU.

Due to the necessary hardware-independence, directly represented variables
(I/0s) may not be declared as local variables in FBs, such variables may only be
“imported” as global variablesusing VAR_EXTERNAL.

One special feature of variable declaration in |EC 61131-3 are the so-called edge-
triggered parameters. The standard provides the standard FBs R_TRIG and
F_TRIG for rising and falling edge detection (see aso Chapter 5).

The use of edge detection as an attribute of variable types is only possible for
input variables (see Section [3]5.4).

FBs are required for the implementation of some typical basic PLC functions, such
as timers and counters, as these must maintain their status information (instance
data). |EC 61131-3 defines several standard FBs that will be described in more
detail and with examplesin Chapter 5

E|5 The Functionl

The basic idea of a function (FUN) as defined by IEC 61131-3 is that the
instructions in the body of a function that are performed on the values of the input
variables result in an unambiguous function value (free from side effects). In this
sense functions can be seen as manufacturer- or application-specific extensions of
the PLC's set of operations.

The following simple rule is valid for functions: the same input values always
result in the same function (return) value. This is independent of how often or at
what time the function is called. Unlike FBs, functions do not have a memory.

Functions can be used as IL operators (instructions) as well as operands in ST
expressions. Like FB types, but unlike FB instances, functions are also accessible
project-wide, i.e. known to al POUs of a PLC project.

48 2 Building Blocks of IEC 61131-3

For the purpose of simplifying and unifying the basic functionality of a PLC
system, IEC 61131-3 predefines a set of frequently used standard functions, whose
features, run-time behaviour and calling interface are standardised (see aso
Chapter 5).

With the help of user-defined functions this collection can be extended to
include device-specific extensions or application-specific libraries.

A detailed example of a function can be found in Appendix C. Functions have
severa restrictions in comparison to other POU types. These restrictions are
necessary to ensure that the functions are truly independent (free of any side
effects) and to allow for the use of functions within expressions, e.g. in ST. This
will be dealt with in detail in the following section.

Pl5.1 Types of variablesin functions and the function value|

Functions have one or any number of input parameters. As opposed to FBs, they
do not have output parameters but return exactly one element as the function
(return) value.

The function value can be of any data type, including derived data types. Thus a
simple Boolean value or a floating-point double word is just asvalid as an array or
a complex data structure consisting of several data elements (multi-element
variable), as described in Chapter 3.

Each programming language of |EC 61131-3 uses the function name as a special
variable within the function body in order to explicitly assign afunction value.

As functions always return the same result when provided with the same input
parameters, they may not store temporary results, status information or internal
data between their invocations, i.e. they operate “without memory”.

Functions can use loca variables for intermediate results, but these will be lost
when terminating the function. Local variables can therefore not be declared as
retentive.

Functions may not call function blocks such as timers, counters or edge detec-
tors. Furthermore, the use of global variables within functionsis not permitted.

The standard does not stipulate how a PLC system should treat functions and the
current values of their variables after a power failure. The POU that calls the
function is therefore responsible for backing up variables where necessary. In any
case it makes sense to use FBs instead of functions if important data is being
processed.

Furthermore, in functions (as in FBs) the declaration of directly represented
variables (1/0 addresses) is not permitted.

2.5 The Function 49

P]5.2 Execution control with EN and ENO|

In LD and FBD, functions have a specia feature not used in the other
programming languages of IEC 61131-3: here the functions possess an additional
input and output. These are the Boolean input EN (Enable In) and the Boolean
output ENO (Enable Out).

LockOff Funl NoError
—| EN ENO (
Varln In out VarOut

Example p]16[[sraphical invocation of afunction with EN/ENO in LD

Example shows the graphical representation for calling function Funl with
EN and ENO in LD. In this example Funl will only be executed if input EN has
the value logical “1" (TRUE), i.e. contact Lockoff is closed. After error-free
execution of the function the output ENO is similarly “1" (TRUE) and the variable
NoError remains set.

With the aid of the EN/ENO pair it is possible to at least partidly integrate any
function, even those whose inputs or function value are not Boolean, like Funl in
Example into the “power flow”. The meaning of EN/ENO based on this
concept is summarised in Table.6]

50 2 Building Blocks of IEC 61131-3

EN Explanation® ENO

EN = FALSE | If EN is FALSE when calling the function, the ENO = FALSE
code-part of the function may not be executed. In
this case output ENO will be set to FALSE upon
exiting in order to indicate that the function has
not been executed.

EN =TRUE | If EN is TRUE when calling the function, the ENO = TRUE
code-part of the function can be executed nor-
mally. In this case ENO will initially be set to
TRUE befor e starting the execution.

ENO can afterwards be set to TRUE or FALSE by | ENO = individual
instructions executed within the function body. value

If aprogram or system error (as described in ENO = FALSE
Appendix E) occurs while executing the function | (error occurred)
ENO will be reset to FALSE by the PLC.
a TRUE=logica “1", FALSE = logica “0"

Table E|6|]\/I eaning of EN and ENO within functions

As can been seen from Table, EN and ENO determine the control flow in a
graphical network by means of conditional function execution and error handling
in case of abnormal termination. EN can be connected not only to a single contact
asin Example[2.16, but also with a sub-network of several contacts, thus setting a
complex precondition. ENO can be similarly be evaluated by a more complex sub-
network (e.g. contacts, coils and functions). These control flow operations should
however be logically distinguished from other LD/FBD operations that represent
the data flow of the PLC program.

These specia inputs/outputs EN and ENO are not treated as normal function
inputs and outputs by I1EC 61131-3, but are reserved only for the tasks described
above. At present |EC 61131-3 does not use or refer to EN/ENO in LD or FBD in
function blocks, but thiswill probably be changed in the near future

The use of these additional inputs and outputs is not included in the other
IEC 61131-3 programming languages. In FBD the representation of EN/ENO is
allowed as an additional feature.

The function call in Example can be represented in IL if the programming
system supports EN/ENO as implicit system variables.

If a programming system supports the usage of EN and ENO, it is difficult to
convert POUs programmed with these into textual form. In order to make this
possible, EN/ENO would also have to be keywords in IL or ST and would need to
be automatically generated there, as they arein LD/FBD. Then afunction called in
LD could be written in IL and could, for example, set the ENO flag in case of an
error. Otherwise only functions written in LD/FBD can be used in LD/FBD
programs. The standard, however, does not make any statement about how to use

2.6 The Program 51

EN and ENO as keywords and graphical elementsin LD/FBD in order to set and
reset them.

On the other hand, it is questionable whether the usage of EN and ENO is ad-
vantageous in comparison functions (std. FUN, see also Appendix A). A compa-
rison function then has two Boolean outputs, each of which can be connected with
acoil. If this comparison is used within a parallel branch of an LD network, ENO
and the output Q have to be connected separately: ENO continues the parallel
branch while Q, in a sense, opens a new sub-network.

Because of this complexity only some of today’s IEC programming systems use
EN/ENO. Instead of dictating the Boolean pair EN/ENO in LD/FBD there are
other conceivable aternatives:

- EN and ENO can be used both implicitly and explicitly in al programming
languages,

- Each function which can be called in LD/FBD must have at least one binary
input and output respectively,

- Only standard functions have an EN/ENO pair (for error handling within the
PL C system). This pair may not be used for user-defined functions.

The third aternative is the nearest to the definition in IEC 61131-3. This would,
however, mean that EN and ENO are PLC system variables, which cannot be
manipulated by the PLC programmer.

Pl6 The Program|

Functions and function blocks constitute “subroutines’, whereas POUs of type
PROGRAM build the PLC’s “main program”. On multitasking-capable controller
hardware several main programs can be executed simultaneously. Therefore
PROGRAMSs have specia features compared to FBs. These features will be
explained in this section.

In addition to the features of FBs, a PLC programmer can use the following
featuresin a PROGRAM:

- Declaration of directly represented variables to access the physical 1/0
addresses of the PLC (%Q, %I, %M) is allowed,

- Usage of VAR _ACCESSor VAR_GLOBAL ispossible,

- A PROGRAM is associated with a task within the configuration, in order to
form arun-time program, i.e. programs are not called explicitly by other POUs.

Variables can be assigned to the PLC 1/Os in a PROGRAM by using directly
represented or symbolic variables as global or POU parameters.

52 2 Building Blocks of IEC 61131-3

Furthermore programs describe the mechanisms by which communication and
global data exchange to other programs take place (inside and outside the
configuration). The variable type VAR_ACCESS is used for this purpose.

These features can also be used at the resource and configuration levels. Thisis, in
fact, to be recommended for complex PLC projects.

Because of the wide functionality of the POU PROGRAM it is possible, in
smaller projects, to work without a configuration definition: the PROGRAM takes
over the task of assigning the program to PLC hardware.

Such possibilities depend on the functionality of a programming system and will
not be dealt with any further here.

A detailed example of a PROGRAM can be found in Appendix C.

The run-time properties and special treatment of a PROGRAM in the CPU are
expressed by associating the PROGRAM with TASKs. The program is instan-
tiated, allowing it to be assigned to more than one task and to be executed several
times simultaneously within the PLC. This instantiation differs, however from that
for FB instances.

The assignment of programs to tasks is done in the CONFIGURATION and is
explained in Chapter 6.

P|7 calling Functions and Function Blocks|

In this section we will deal with the special features which have to be considered
when calling functions and function blocks. These features apply to standard as
well as user-defined functions and function blocks.

The following examples will be givenin IL. The use of ST and graphical repre-
sentation in LD and FBD are topics of Chapter @

P]7.1 Mutual calls of POUSs|

The following rules, visualised in Figure, can be applied to the mutual calling
of POU types:

- PROGRAM may call FUNCTION_BLOCK and FUNCTION, but not the
other way round,

- FUNCTION_BLOCK may call FUNCTION_BLOCK,

- FUNCTION_BLOCK may call FUNCTION, but not the other way round,

- Calls of POUs may not be recursive, i.e. a POU may not call (an instance of)
itself either directly or indirectly.

2.7 Calling Functions and Function Blocks 53

PROGRAM
7\
FUNCTION FUNCTION_BLOCK
| 2 // \\3
FUNCTION FUNCTION FUNCTION_BLOCK

1 Program calls function or function block
2 Function calls function

3 Function block calls function or function block

Figure E7.|]The three possible ways of invocation among the POU types

Programs and FB instances may call FB instances. Functions, on the other hand,
may not call FB instances, as otherwise the independence (freedom from side
effects) of functions could not be guaranteed.

Programs (PROGRAM) are instantiated to form run-time programs within the
Configuration by association with a TASK. They are then called by the Resource.

E|7.2 Recursive calls areforbiddenl

IEC 1131-3 clearly defines that POUs may not call themselves (recursion) either
directly or indirectly, i.e. a POU may not call a POU instance of the same type
and/or name. This would mean that a POU could “define itself” by using its own
name in its declaration or calling itself within its own body. Recursion is, however,
usually permitted in other programming languages in the PC world.

If recursion were allowed, it would not be possible for the programming system
to calculate the maximum memory space needed by a recursive PLC program at
run time.

Recursion can always be replaced by corresponding iterative constructs, i.e. by
building program loops.

Both the following figures show examples of invalid calls:

54 2 Building Blocks of IEC 61131-3

FUNCTION Funl:BOOL FUNCTION Funl : BOOL
INT Parl VAR
INT Par2 +— BOOL Parl, Par2 : INT;
END_VAR

Funl LD Parl
Parl—|Parl Funl Par2
Par2—Par2 — Funl ST Funl
END_FUNCTION END_FUNCTION

Example 17|:|Invalid recursive call of a function in graphical and IL representation:
nested invocation.

In Example R.17]the same function is called again within function Fun.

The top half of this example shows the declaration part of the function (input
variables Parl and Par2 of datatype INT and function value of type BOOL).

In the bottom part, this function is called with the same input variables so that
there would be an endless (recursive) chain of calls at run time.

FUNCTION_BLOCK FunBst

VAR_INPUT
In1 : DINT; (* input variable *)

END_VAR

VAR
InstFunBst : FunBst; (* improper instance of the same type *)
Varl : DINT; (* local variable *)

END_VAR

CALC InstFunBst (Inl1 :=Varl); (*illegal recursive invocation! *)

END_FUNCTION_BLOCK

ExampleEIlS.[Forbi dden recursive call of an FB in IL: nesting already in declaration part.

Example shows function block FunBst, in whose local variable declaration
(VAR) an instance of its own type (FunBst) is declared. This instance is called in
the function body. This would result in endlessly deep nesting when instantiating
the FB in the declaration, and the memory space required for the instance at run
time would be impossible to determine.

Programmers themselves or the programming/PLC system must check whether
unintentional recursive calling existsin the PLC program.

2.7 Calling Functions and Function Blocks 55

This checking can be carried out when creating the program by means of a POU
caling tree, as the illegal use of recursion applies to FB types and not to their
instance names. This is even possible if FB instance names are used as input
parameters (see also Sectionp.7.5).

The following example shows how recursive calls can occur even if afunction or
FB instance does not directly call itself. It suffices if they mutually call each other.

FUNCTION Funl:BOOL FUNCTION Fun2: BOOL

INT —{Parl INT —{Parl

INT —Par2 — BOOL INT —Par2 — BOOL
Fun2 Funl

Parl—Parl Parl—Parl

Par2—{Par2 — Funl Par2—{Par2 — Funl

END_FUNCTION END_FUNCTION

ExampleEllQ.ﬂ?ecursion by mutual invocation in graphical representation

Such types of recursion are, on principle, not permitted in 1EC 61131-3. The
calling condition may be defined as follows: if a POU is caled by POU A, that
POU and all the POUs below it in the calling hierarchy may not use the name of
POU A (FB instance or function name).

Unlike most of the modern high-level languages (such as C), recursion is
therefore prohibited by IEC 61131-3. This helps protect PLC programs against
program errors caused by unintentional recursion.

E|7.3 Calling with formal parametersl

When a FUN/FB is called, the input parameters are passed to the POU’s input
variables. These input variables are also caled formal parameters, i.e. they are
placeholders. The input parameters are known as actual parameters in order to
express that they contain actual input values.

When caling a POU, the formal parameters may or may not be explicitly
specified. This depends on the POU type (FUN or FB) and on the programming
language used for the POU call (see also Chapter 4).

Table gives a summary of which POU types can be called, in textual and
graphical representation, with or without giving the formal parameter names.

56 2 Building Blocks of IEC 61131-3

L anguage Function Function block Program
IL without with @ with
ST with or without with with
LD and FBD with P with with

a possiblein three different ways, see Section jjL.4
b with std. FUN: if a parameter name exists

Table ET[Possible explicit specification of formal parameters (“with” or “without”) in
POU calls

In FBs and PROGs the formal parameters must always be specified explicitly,
independently of the programming language. In IL there are different ways of
doing this (see Section [1.4).

In ST functions can be called with or without specifying the names of the formal
parameters.

Many formal parameters of standard functions do not have a name (see
Appendix A). Therefore these cannot be displayed in graphical representation and
cannot be explicitly specified in textual languages.

IEC 61131-3 does not state whether the names of formal parameters can be
specified when calling user-defined functions in IL. However, in order to keep
such function calls consistent with those of standard functions, it is assumed that
the names of formal parameters may not be used with function callsinIL.

The samerules are valid for the calling of standard functions and standard function
blocks. Example R.20]shows examples for each POU type.

FB declaration:

FUNCTION_BLOCK FBIk

2.7 Calling Functions and Function Blocks

FUN declaration:

FUNCTION Fctn : INT

PROG declaration:

PROGRAM Prgrm

VAR_INPUT VAR_INPUT VAR_GLOBAL
Parl : TIME; Parl : TIME; FunBlk : FBIK;
Par2 : WORD; Par2 : WORD; VarGlob: INT;
Par3 : INT; Par3 : INT;

END_VAR END_VAR END_VAR

... (*instructions *)
END_FUNCTION_BLOCK

... (*instructions *)
END_FUNCTION

... (* instructions *)
END_PROGRAM

57

(* 1. Invocations in IL *)

LD t#20:12

Fctn %IW4, VarGlob (* function call *)
CAL FunBlk (Parl :=1t#20:12, Par2 := %IW4, Par3 := VarGlob) (* FB call *)

(* 2. Invocations in ST *)

Fctn (t#20:12, %IW4, VarGlob) (* function call *)
Fctn (Parl := t#20:12, Par2 := %IW4, Par3 := VarGlob); (* function call *)
FunBIk (Parl = t#20:12, Par2 := %IW4, Par3 := VarGlob); (* FB call *)

Example ElZODEquivaIent function and function block calls with and without explicit
formal parametersin the textual languages IL and ST. In both cases the invocation (calling)
isdone in the program Prgrm.

In IL the first actual parameter is loaded as the current result (CR) before the
invocation instruction (CAL) is given, as can be seen from the call of function Fctn
in Example When calling the function the other two parameters are specified
separated by commas, the names of these formal parameters may not be included.

The two equivalent calls in ST can be written with or without the names of
formal parameters. The input parameters are enclosed in brackets each time.

In the call of FB instance FunBlk in this example all three formal parameters are
specified in full in both IL and ST.

The usage of formal and actual parameters in graphical representation is shown in
Example[3|18.

E|7.4 Callswith input parametersomitted or in a different 0rder|]

Functions and function blocks can be called even if the input parameter list is
incomplete or not every parameter is assigned a value.

If input parameters are omitted, the names of the formal parameters that are
used must be specified explicitly. This ensures that the programming system can
assign the actual parameters to the correct formal parameters.

58 2 Building Blocks of IEC 61131-3

If the order of the parameters in a FUN/FB call is to be changed, it is also
necessary to specify the formal parameter names explicitly. These situations are
shown, asan examplein IL, in Example.21]

(*1. complete FB call *)
CAL FunBIk (Parl := t#20:12, Par2 := %IW4, Par3 := VarGlob);

(*2. complete FB call with parameters in a changed order *)
CAL FunBIk (Par2 := %IW4, Parl := t#20:12, Par3 := VarGlob);

(*3. incomplete FB call *)
CAL FunBIk (Par2 := %IW4);

(*4. incomplete FB call with parameters in a changed order *)
CAL FunBIk (Par3 := VarGlob, Parl := t#20:12);

Example P]21[Fxamples of the FB call from Example[2.24 with parameters omitted and in
adifferent order, writtenin IL

This means that either all formal parameters must be specified, and the parameter
order is not relevant, or no formal parameters are used and the entries must appear
in the correct order. The formal parameters always have to be specified when
calling FBs, for functionsthisis, however, language-dependent (see TabIe@.

Assignments to input variables can be omitted if the input variables are
“initialised” in the declaration part of the POU. Instead of the actual parameter that
ismissing theinitial value will then be used. If there is no user-defined initial value
the default value for the standard data types of IEC 61131-3 will be used. This
ensures that input variables always have values.

For FBsinitialisation is performed only for the first call of an instance. After this
the values from the last call till exist, because instance data (including input
variables) isretained.

P]7.5 FB instances as actual FB parameters|

This section describes the use of FB instance names as well as their inputs and
outputs as actual parametersin the calling of other function blocks.

Using Example this section explains what facilities |IEC 61131-3 offers for
indirect calling or indirect parameter assignment of FB instances.

2.7 Calling Functions and Function Blocks 59

FUNCTION_BLOCK MainFB

VAR_IN_OUT
Timel : TON; (* 1% instance of TON *)
Time2 : TON; (* 2" instance of TON *)

InstFB : SubFB; (* Instance of SubFB *)

END_VAR
(* FB instance call *)
CAL InstFB (Timer := Timel, (* FB instance name *)
TimeQ :=Time2.Q, (* FB output *)

TimelN :=TRUE) (* FB input *)

LD InstFB.Time3.Q (* Loading the FB output *)

CAL Timel (* Invocation of on-delay timer*)

Exampleﬂzz[bsi ng the FB instance name Timel and the output parameter Time2.Q as
actual parameters of another FB. The timers Timel and Time2 are instances of the
standard FB TON (on-delay, see Chapter 5). SubFB will be declared in Example[2.23

Instance names and the inputs and outputs of instances can be used as the actual
parameters for input or input/output variables. TabIe shows the cases where
thisisallowed (in table: “yes”) and not allowed (“no”).

60 2 Building Blocks of IEC 61131-3

Asactual parameter Return value,
for SubFB External variable
| nstance Example VAR_INPUT VAR_IN_OUT VAR_EXTERNAL
(pointer) VAR OUTPUT
Instance name | Timel yes? yesb yesC
-input Time2.IN - B ;
-output Time2.Q yes nod '

a Instance may not be called within SubFB (indirect FB call not possible)

b Indirect FB call is possible, output of instance may not be changed within SubFB
¢ Direct FB call, output of instance may not be changed within MainFB

d Thefunction (return) value of a function cannot be used either

Table ElS[PossibIe cases for using or indirectly calling FB instances as actual parameters
of FBs. The “Example’ column refers to Exampld 2.22. The last column shows that FB
instances may also be used as external variables or as return values. Time2.IN may not be
used for read access and cannot therefore be passed as a parameter.

As this summary shows, only certain combinations of function block instance
names and their inputs and outputs can be passed as actual parameters to function
blocks for each of the variable types.

VAR_INPUT: FB instances and their outputs cannot be called or altered within
SubFB if they are passed as VAR _INPUT. They may, however, be read.

VAR_IN_OUT: The output of an FB instance, whose pointer would be used here,
is not allowed as a parameter for this variable type. An erroneous manipulation of
this output can thus be prevented. Similarly, a pointer to the function value of a
function is not allowed as a parameter for aVAR_IN_OUT variable.

The instance passed as a parameter can then be called, thereby implementing an
indirect FB call.

The outputs of the FB instance that has been passed may not be written to. FB
instance inputs may, however, be freely accessed.

VAR_EXTERNAL, VAR_OUTPUT: FB instances are caled directly, their
inputs and outputs may only be read by the calling POU.

2.7 Calling Functions and Function Blocks 61

Example of an indirect FB call.
Example 2.23 shows (together with Example 2.22) the use of some cases permitted
in Table 2.8 within function block SubFB.

FUNCTION_BLOCK SubFB
VAR_INPUT
TimelN : BOOL; (* Boolean input variable *)
TimeQ : BOOL; (* Boolean input variable *)
END_VAR
VAR_IN_OUT
Timer : TON; (* pointer to instance Timel of TON — input/output variable *)
END_VAR
VAR_OUTPUT
Time3 : TON; (* 3rd instance of TON *)
END_VAR
VAR
Start : BOOL := TRUE; (* local Boolean variable *)
END_VAR

(* Indirect call of Timel setting/checking the actual parameter values using Timer *)
LD Start

ST Timer.IN (* starting of Timer Timel *)
CAL Timer (* calling the on-delay timer Time 1 indirectly *)
LD Timer.Q (* checking the output of Timel *)

(* Direct call of Time3; indirect access to Time2 *)

LD TimelN (*indirect checking of the input of Time2 is not possible *)
ST Time3.IN (* starting the timer using Time3.IN *)

CAL Time3 (* calling the on-delay timer Time3 directly *)

LD Time3.Q (*checking the output using Time3.Q *)

LD TimeQ (*indirectly checking the output of Time 2 *)

END_FUNCTION_BLOCK

Example 2.23. Alternative ways of cdling the on-delay FB Timel from Example 2.22
indirectly prjd Jsgpge of its inputs and outputs]

This example shows the indirect call of FB Timel, whose instance name was
passed to FB SubFB as an input/output variable in Example 2.22. The function
block SubFB is only assigned the FB instance name Time1 [at_the run time of
MainFB. In SubFB Timel (as input variable Timer) is provided with the parameter
Timer.IN and then called.

As shown with Example 2.23, it is also possible to access the inputs and outputs
of an FB passed as an insfancg name. Here the instance inputs (Timer.IN) can be
read and written to, whereas the outputs (as Timer.Q) can only be read.

The FB instance Time3 in this example serves as a comparison between the
treatment of input parameters and of the return values of an FB as output variables.

62 2 Building Blocks of IEC 61131-3

FB instance names as actual parameters of functions.
Instance names (such as Timel) and components of an FB instance (such as
Time2.Q) can also be used as actual parameters for functions. Initially this appears
to be inconsistent with the requirement that functions have to produce the same
result when supplied with the same inputs and that they may not call FBs.

This is, however, not as contradictory as it seems. the FB instance passed as a
parameter is not called, but its input and output variables are treated like elements
of an normal data structure, see also Section 2.4.1.

Function values as actual parameters.
Functions and function values may also be used gs actual parameters for functions
and function blocks. The input variables have the same data type as the function
and are assigned the function value when called.

IEC 61131-3 does not give any explicit instructions about this possibility, thus
making it implementation-dependent.

2.8 Summary of POU Features

2.8 Summary of POU Features

63

THe following table summarises all the essential POU features that have been
presented and discussed in this chapter.

O

Feature Function Function Block Program
Input parameter yes yes yes
Output parameter no yes yes
I nput/output parameter no yes yes
Function value yes no no
Invocation of functions yes yes yes
Invocation of function blocks no yes yes
Invocation of programs no no no
Declaration of global variables no no yes
Accessto externa variables no yes yes
Declaration of directly represented no no yes
variables 2

Declaration of loca variables yes yes yes
Declaration of FB instances no yes yes
Overloading and extension P yes no no
Edge detection possible no yes yes
Usage of ENJENO © yes no no
Retention of local and output no yes yes
variables

Indirect FB call no yes yes
Usage of function values as input yes yes yes
parametersd

Usage of FB instances as input yes yes yes
parameters

Recursive invocation no no no

a for function blocks only with VAR_EXTERNAL

b for standard functions
¢ aso planned for function blocks
d

not in IL, otherwise: implementati on-dependent

Table 2.9. An overview of the POU features summarising the important topics of this chap-
ter. The entries “yes’ or “no” mean “permitted” and “not permitted” for the corresponding

POU type respectively.

00

BlVariables, Data Types and Common Elements|

Contents: see paper version.

4liThe New Programming L anguages of
|EC 61131-3]

Contents: see paper version.

B|Standar dised PL C Functionalityf]

The IEC not only standardises the syntax of programming languages, but even
goes a step further to unify the implementation of typical PLC functions, such as
timers, counters or special arithmetic operations.

The standard does this by defining typical PLC functions and function blocks
and describing their behaviour exactly. These elements are known as standard
functions and standard function blocks respectively. Their names are reserved
keywords.

If the functions and function blocks in the programming systems and block
libraries of different manufacturers are given the names specified in the standard,
they must comply with the rules set out in the standard. Manufacturers can also
offer additional PLC functions which, for example, support particular hardware
properties or other characteristics of a PLC system.

The definition of an unambiguous standard for PLC functions is an essentia re-
quirement for uniform, manufacturer- and project-independent training, program-
ming and documentation.

This chapter gives an overview of the most important standard functions and
function blocks as well as the concepts used within them:

1) Standard functions (std. FUN)
- Cdling interface
- Extensibility
- Overloading
- Examples
2) Standard function blocks (std. FB)
- Cdlling interface
- Examples

The standard functions correspond to the basic logical operators used in conven-
tional PLC systems (addition, bit-shifting, comparison etc.), whereas the standard
function blocks are responsible for PLC functions with status information, such as
timers, counters, R/S flipflops and edge detectors.

202 5 Standardised PLC Functionality

In the following sections, the calling interfaces (input and output variables and
the function [return] value) for standard functions and function blocks are
described in detail. Practical examples accompany the various descriptions.

The graphical declarations of al the standard functions and function blocks,
together with a short functional description, are given in Appendices A and B.

The general usage of functions and function blocks has already been discussed in
Chapter 2 and the properties of their formal parametersin Chapter 3.

Bl1 Standard Functions|

|EC 61131-3 defines the following eight groups of standard functions:

1) Datatype conversion functions,

2) Numerical functions,

3) Arithmetic functions,

4) Bit-string functions (bit-shift and bitwise Boolean functions),
5) Selection and comparison functions,

6) Character string functions,

7) Functions for time data types,

8) Functions for enumerated data types.

Table[5.] summarises all the standard functions of the standard. The special func-
tions for time data types (ADD, SUB, MUL, DIV, CONCAT) and neumerated
data types (SEL, MUX, EQ, NE) are grouped together with the other functions in
the categories Arithmetic, Comparison, Selection and Character string.

The table gives the function name, the data type of the function values and a
short description of the function. Together with Table, it also gives the names
and data types of the input variables.

With the exception of the generic data types, the abbreviations for the data types of
the input variables and function values in Table arelisted in Table These
abbreviations correspond to the names of the input variables used by IEC 61131-3
for the respective standard functions. ENUM is an additional abbreviation used to
make Table.1)clearer.

5.1 Standard Functions 203

Standard functions (with data Datatype | Short description over- | exten-
types of input variables) of function loa- | sible

value ded
Type conversion
* TO_** (ANY) [ANY Data type conversion yes no
TRUNC (ANY_REAL) | ANY_INT [Rounding up/down yes no
BCD_TO_** (ANY_BIT) [ANY Conversion from BCD yes no
* TO_BCD (ANY_INT) [ANY_BIT |Conversionto BCD yes no
DATE_AND_TIME_TO_- Conversion totime-of-day | no no
TIME_OF_DAY (DT) | TOD
DATE_AND_TIME_TO_- Conversion to date no no
DATE (DT) | DATE
Numerical
ABS (ANY_NUM) [ANY_NUM | Absolute number yes no
SQRT (ANY_REAL) | ANY_REAL |Square root (base 2) yes no
LN (ANY_REAL) | ANY_REAL [Natural logarithm yes no
LOG (ANY_REAL) | ANY_REAL [Logarithm to base 10 yes no
EXP (ANY_REAL) | ANY_REAL [Exponentiation yes no
SIN (ANY_REAL) | ANY_REAL |Sine ves | no
COoS (ANY_REAL) | ANY_REAL |Cosine yes | no
TAN (ANY_REAL) | ANY_REAL [Tangent yes no
ASIN (ANY_REAL) [ANY_REAL [Arcsine yes no
ACOS (ANY_REAL) | ANY_REAL |Arc cosine yes no
ATAN (ANY_REAL) [ANY_REAL [Arc tangent yes no
Arithmetic (IN1, IN2)
ADD {+} (ANY_NUM, ANY_NUM) | ANY_NUM |Addition yes | yes
ADD {+} @ (TIME, TIME) | TIME Time addition yes no
ADD {+} @ (TOD, TIME) | TOD Time-of-day addition yes no
ADD {+} @ (DT, TIME) | DT Date addition yes no
MUL {*} (ANY_NUM, ANY_NUM) | ANY_NUM [Multiplication yes | yes
MUL {*} @ (TIME, ANY_NUM) | TIME Time multiplication yes no
SUB {-} (ANY_NUM, ANY_NUM) | ANY_NUM [Subtraction yes no
SUB {-} a (TIME, TIME) | TIME Time subtraction yes no
SUB {-} a (DATE, DATE) | TIME Date subtraction yes no
SUB {-} a (TOD, TIME) | TOD Time-of-day subtraction yes no
SUB {-} a (TOD, TOD) | TIME Time-of-day subtraction yes no
SUB {-} a (DT, TIME) | DT Date and time subtraction | yes no
SUB {-} a (DT, DT) | TIME Date and time subtraction | yes no
DIV {/} (ANY_NUM, ANY_NUM) [ANY_NUM |Division yes no
DIV{/2a (TIME, ANY_NUM) | TIME Timedivision yes no
MOD (ANY_NUM, ANY_NUM) | ANY_NUM [Remainder (modulo) yes no
EXPT {**} (ANY_NUM, ANY_NUM) | ANY_NUM | Exponent ves | no
MOVE {:=} (ANY_NUM, ANY_NUM) [ANY_NUM |Assignment yes no

a Specia function for time data type

TableEIl.ﬂAn overview of the standard functions (continued on next page)

204

5 Standardised PLC Functionality

Standard functions (with data Datatype | Short description over- | exten-
types of input variables) of function loa- |sble
value ded

Bit-shift (IN1, N)

SHL (ANY_BIT, N) | ANY_BIT | Shift left yes | no
SHR (ANY_BIT, N) | ANY_BIT | Shift right ves | no
ROR (ANY_BIT, N) [ANY_BIT Rotate right yes no
ROL (ANY _BIT,N) | ANY_BIT |Rotateleft yes no
Bitwise (IN1, IN2)

AND {&} (ANY_BIT, ANY_BIT) | ANY_BIT |Bitwise AND yes | yes
OR {>=1} (ANY_BIT, ANY_BIT) [ANY_BIT Bitwise OR yes yes
XOR {=2k+1} (ANY_BIT, ANY_BIT) | ANY_BIT Bitwise EXOR yes yes
NOT (ANY_BIT, ANY_BIT) [ANY_BIT |Bitwiseinverting yes no
Selection (IN1, IN2)

SEL (G, ANY, ANY) [ANY Binary selection (1 of 2) yes no
SEL® (G, ENUM, ENUM) | ENUM Binary selection (1 of 2) no no
MAX (ANY, ANY) | ANY Maximum yes | yes
MIN (ANY, ANY) | ANY Minimum yes | yes
LIMIT (MN, ANY, MX) | ANY Limitation yes no
MUX (K, ANY, ..., ANY) [ANY Multiplexer (select 1 of N) | yes yes
MUXP (K, ENUM, ..., ENUM) | ENUM Multiplexer (select 10fN) | no | no
Comparison (IN1, IN2)

GT {>} (ANY, ANY) [BOOL Greater than yes yes
GE {>=} (ANY, ANY) [BOOL Greater than or equal to yes yes
EQ{=} (ANY, ANY) | BOOL Equal to ves | yes
EQ{=}P (ENUM, ENUM) | BOOL Equal to o | no
LT {<} (ANY, ANY) | BOOL Less than yes | yes
LE {<=} (ANY, ANY) | BOOL Less than or equal to yes yes
NE {<>} (ANY, ANY) [BOOL Not equal to yes no
NE {<>} P (ENUM, ENUM) | BOOL Not equal to no | no
Character string (IN1, IN2)

LEN (STRING) | INT Length of string no no
LEFT (STRING, L) | STRING string “ [eft of” yes no
RIGHT (STRING, L) | STRING string “right of” yes no
MID (STRING, L, P) | STRING string “from the middle” yes no
CONCAT (STRING, STRING) | STRING Concatenation no yes
CONCAT 2 (DATE, TOD) | DT Time concatenation no no
INSERT (STRING, STRING, P) | STRING Insertion (into) yes yes
DELETE (STRING, L, P) | STRING Deletion (within) yes | yes
REPLACE (STRING, STRING, L, P) [STRING Replacement (within) Yes | yes
FIND (STRING, STRING) | INT Find position Yes | yes

a Specia function for time data type

b Special function for enumeration data type

Table F]1. (continued)

5.1 Standard Functions 205

Input M eaning Datatype
N Number of bits to be shifted UINT

L L eft position within character string UINT

P Position within character string UINT

G Selection out of 2 inputs (gate) BOOL

K Selection out of ninputs ANY _INT
MN Minimum value for limitation ANY

MX Maximum value for limitation ANY
ENUM Data type of enumeration

TableBJ2.[Rbbreviations and meanings of the input variablesin Table[5.1]

The function names are listed on the left-hand side of column 1 in Table@. The
meanings of the asterisks (*) in the function names of the “ Type conversion” group
are asfollows (see also Appendix A):

* Datatype of theinput variable (right hand side of column 1)
** Datatype of the function value (column 2)

The names of the input variables of a function, if any, are given in the italic
heading of the group, if they apply to the group as a whole. For example, the input
variables for arithmetic functions are named IN1, IN2 and, when extended, IN3,
IN4, If afunction only has a single input variable, this does not have a name.

If a function with several inputs has only one input of data type ANY (over-
loaded), its variable name is “IN” (without number). This applies to LIMIT,
LEFT, RIGHT, MID and DELETE.

Within |EC 61131-3, SEL is an exception to this uniformity. The inputs of this
function are called G, INO and IN1 (instead of IN1, IN2).

Some standard functions have an alternative function name consisting of symbols
in their graphical representation, as shown in curved brackets directly after the
function name in Table[5.]. For example, the addition function can be called as
ADD (operator in IL) or as “+" (graphical symbol in LD/FBD or within ST
expressions).

206 5 Standardised PLC Functionality

B]1.1 Overloaded and extensible functions|

The data types of the input variables are given in round brackets next to the
function names in Table. Here generic data types, already introduced in Table
EQ, are also given for reasons of clarity. Each function whose input variable is
described using a generic data type is called overloaded and has a “yes’ in the
corresponding column in Table [5.1]. This simply means that the function is not
restricted to a single data type for its input variables, but can be applied to
different data types.

The data type of the function value (2™ column) is normally the same as the data
type of itsinputs. Exceptions are functions such as LEN, which expects a character
string asitsinput but returns INT asits function value.

If a standard function can have a variable number of inputs (2, 3, 4,...), it iscaled
extensible. Such functions have a“yes’ in the corresponding columnin TabIe

No formal parameters have to be entered when calling extensible functions. In
textual languages they are called simply by using actual parameters separated by
commeas — in graphical representation the parameter names inside the boxes are
omitted.

In IEC 61131-3 these properties are not applied to user-defined functions, but can
also be extended to these functions (and other POU types) as a supplement to the
standard, depending on the programming system.

Overloading and extensibility of standard functions is explained with the use of
examplesin the next two sections.

Overloaded functions
Overloaded functions can be applied for processing several data types using only
one function name.

An overloaded function does not always support every data type of a generic
datatype, as explained in Chapter 3.

For example, if a PLC programming system recognises the integer data types INT,
DINT and SINT, only these three data types will be accepted for an overloaded
function ADD which supports the generic data type ANY _INT.

If a standard function is not overloaded, but restricted to a certain elementary
data type, an underline character and the relevant data type must be added to its
name: e.g. ADD_SINT is an addition function restricted to data type SINT. Such
functions are called typed. Overloaded functions can also be referred to as type-
independent.

Thisisillustrated in Exampl e using integer addition:

5.1 Standard Functions 207

(" ADD_INT)

INT —

INT — — INT
ADD_DINT ADD

DINT— ; ANY_ INT—

DINT— [DINT ANY_ INT— — ANY_INT
ADD_SINT

SINT—|

SINT— — SINT

Typed standard Overloaded standard function ADD

functions ADD_*

Example BJ1[Jryped standard functions ADD_INT, ADD_DINT and ADD_SINT for
integer addition and the overloaded standard function ADD

When overloaded functions are used, the programming system automatically
chooses the appropriate typed function. For example, if the ADD function shown
in Example is caled with actua parameters of data type DINT, the
ADD_DINT function will automatically be selected and called (invisibly to the
user).

When calling standard functions, each overloaded input and, in some cases, the
function return value, must be of the same data type, i.e. it is not permissible to use
variables of different types as actual parameters at the sametime.

If the inputs are of different data types, the PLC programmer must use explicit
type conversion functions for the corresponding inputs and function return value
respectively, as shown in Example for ADD_DINT and ADD_INT. In such
cases, instead of the overloaded function ADD its typed variant (e.g. ADD_DINT)
should be used.

208 5 Standardised PLC Functionality

VAR
Var_Integer : INT;
Var_Shortinteger SINT;
Var_FloatingPoint : REAL;
Var_DoubleWord : DWORD;
END_VAR

ADD
Var_Integer INT_TO_DINT

Var_FIoatingPoint—{ REAL_TO_DINT }— —{ DlNT_To_DWORD}—Var_DoubIeWord
Var_Integer ADD
Var_Shortinteger —{ SINT_TO_INT _H Var_lnteger
ADD
Var_Integer
Var_Integer — INT_To_SINT _ |var_Shortinteger

0o

Example 5.2. Calls of the overloaded standard function ADD with type conversion func-
tions to ensure correct input data types. In the top case the programming system replaces
ADD with the typed standard function ADD_DINT. In the other two cases the function
ADD_INT isused.

Extensible functions

Extensible standard functions can have a variable number of inputs, between two
and an upper limit imposed by the PLC system. In graphical representation, the
height of their boxes depends on the number of inputs.

Extending the number of inputs of a standard function serves the same purpose as
using cascaded calls to the same function, in both the textual and the graphical
programming languages of |EC 61131-3. Especialy in the graphical languages LD
and FBD, the amount of space required to write the function can be greatly
reduced.

Varl —] ADD Varl —] ADD
Var2 — — ADD Var2 —|
Var3 — — ADD Var3 —]
Var4d — — Res Var4d — — Res

Cascaded adders Extended adder

5.1 Standard Functions 209

Instruction List (IL) Structured Text (ST)

LD Varl

ADD Var2 Res := Varl + Var2;

ADD Var3 Res := Res + Var3;

ADD Var4d Res := Res + Var4;

ST Res

Can be replaced by: Can be replaced by:

LD Varl

ADD Var2, Var3, Var4 Res := Varl + Var2 + Var3 + Var4;
ST Res

Example B]3[ICascaded functions as an alternative representation for an extensible function
showing addition in graphical and textual (IL and ST) representation

In Examplethe triple call of the standard function ADD is replaced by asingle
call with extended inputs. Simplifications also result for the textual versionsin IL
and ST.

Ell.l Examplesl

In this section the calling interfaces of the standard functions are shown in
examples. The subject of calling functions has already been discussed in detail in
Chapter 2.

At least one example has been selected from each function group in Table
The examples are given in the textual languages IL and ST and graphical
representations LD and FBD. In IL and ST the names of the formal parameters are
not specified explicitly in the function calls.

For these examples the PROGRAM ProgFrameFUN in Exampld5.4 is used as the
basis for the common declaration part for the required variables.

210 5 Standardised PLC Functionality

TYPE (* enumeration type for colours *)
COLOURS : (IRed, IYellow, IGreen, (* light *)
Red, Yellow, Green, (* normal *)
dRed, dYellow, dGreen); (* dark *)
END_TYPE
PROGRAM ProgFrameFUN (* common declaration part for std. FUNs *)
VAR (* local data *)
RPM : REAL:=10.5; (* revs ®)
RPM1 . REAL; (*revs 1%
RPM2 . REAL := 46,8895504; (*revs 2%
Level : UINT =1, (* revs level *)
Status . BYTE := 2#10101111, (* status *)
Result . BYTE; (* intermediate result *)
Mask : BYTE := 2#11110000; (* bit mask *)
PLCstand : STRING [11]:="IEC 61131-5 (* character string *)
AT %IB2 . SINT; (* for MUX selection *)
AT %QX3.0 : BOOL; (* output bit *)
DateTime : DT :=dt#1994-12-23-01:02:03; (* date and time *)
Time . TIME := t#04h57m57s; (* time *)
TraffLight : COLOURS; (* traffic light *)
ColScalel : COLOURS:= IYellow; (* scale of colours 1 *)
ColScale2 : COLOURS:= Yellow; (* scale of colours 2 *)
ColScale3 : COLOURS:=dYellow; (* scale of colours 3 *)
Scale D INT =2 (* selection scale of colours *)
END_VAR

(* program body with examples *)
END_PROGRAM

Example 4[|T he common declarations for the examples explaining the usage of the
standard functions

Type conversion functions

RPM — REAL_TO_UINT— Level

Instruction List (IL) Structured Text (ST)
LD RPM
REAL_TO_UINT Level := REAL_TO_UINT (RPM);
ST Level

ExampleB]5[onverting from REAL to UINT

This example shows type conversion of the REAL value RPM (floating point) to
the unsigned integer (UINT) value Level.

5.1 Standard Functions 211

The variable Level has the value 10 after executing the function, as it is rounded
down from 10.5.

Numerical functions

RPM— LN — RPM1
Instruction List (IL) Structured Text (ST)
LD RPM
LN RPM1 := LN (RPM);
ST RPM1

Example p]6[Natural logarithm

This example shows the calculation of a natural logarithm. Variable RPM1 has the
value 2.3513 after execution.

Arithmetic functions

RPM — MUL
RPM1—
RPM2— — RPM
Instruction List (IL) Structured Text (ST)
LD RPM
MUL RPM1 RPM := RPM * RPM1 * RPM2;
MUL RPM2
ST RPM

Example [B]7[Multiplication. Instead of using MUL twice in IL, the shortened form: MUL
RPM1, RPM2 can also be used.

This example uses the overloaded multiplication function. Because its inputs are of
type REAL it is mapped to the typed function MUL_REAL. The variable RPM has
the value 1157,625 after execution of the function.

In graphical representation, the multiplication sign “ * ” may aso be used
instead of the keyword MUL. Thisis shown here only for ST.

212 5 Standardised PLC Functionality

Bit-shift functions

SHL
Status —{IN
Level —N — Result
Instruction List (IL) Structured Text (ST)
LD Status
SHL Level Result := SHL (IN := Status,
ST Result N :=Level);

Example]8[Bit-shift left

In Example [5.§ the shift function SHL is used to shift the value of the variable
Status to the left by the number of bit positions specified by the value Level.

After executing the shifting function, Result has the value 2401011110, i.e.
when shifting left, a“ 0" isinserted from the right.

Bitwise Boolean functions

AND
Status —Q
Mask — — Result
Instruction List (IL) Structured Text (ST)
LD Status
NOT
AND Mask Result := NOT Status & Mask;
ST Result

Example p]9[AND operation

Asthelogica AND is an extensible function, the input parameter names need not
be given (similar to MUL). AND is also an overloaded function, its inputs and
function value here are of type BYTE. The programming system therefore
automatically uses the typed function AND_BYTE.

5.1 Standard Functions 213

Instead of the IL instructions LD and NOT in Exampl e the Boolean operator
LDN (load negated) could be used. This inversion is graphically represented by a
function input with asmall circle.

In graphical representation, the normal AND symbol “&” may also be used
instead of the keyword AND. Thisis shown here only for ST.

In Example 5.9 AND is used to extract certain bits from the value Status with
the aid of a bit mask.

The output Result has the value 2#01010000 after executing the function, i.e. the
lower four bits have been reset by the mask.

Selection functions

MUX

%IB2 —K
RPM1 —
RPM2 — — RPM

Instruction List (IL) Structured Text (ST)
LD %IB2
MUX RPM1, RPM2 RPM:=MUX (K :=%IB2,
ST RPM RPM1,

RPM2);

Example p]10[Multiplexer

The multiplexer MUX has an integer input K and overloaded inputs of the same
data type as the function value. The input parameter names, with the exception of
K, can therefore be left out. In Example[5.1Q K is of data type SINT (integer Byte
with sign).

If the input byte %IB2 has the value “1”, RPM is assigned the value RPM2 after
execution, if itis“0”, it is assigned the value RPML1.

If the value of input K is less than O or greater than the number of the remaining
inputs, the programming system or the run-time system will report an error (see
also Appendix E).

214 5 Standardised PLC Functionality

Comparison functions

>=
GE RPM —
RPM1 —] — &
RPM —
RPM1 — -
RPM2 — — %QX3.0 RPM1 —
RPM2 — — — %QX3.0
Extended comparison Equivalent representation
Instruction List (IL) Structured Text (ST)
LD RPM
GE RPM1 %QX3.0 :=GE (RPM,
GE RPM2 RPM1,
ST %QX3.0 RPM2);

Example E]llDAn extended comparison. An equivalent solution is shown in graphical
representation on the right-hand side.

Comparison functions use overloaded inputs, their output Q is Boolean. They re-
present a kind of “connecting link” between numerical/arithmetic calculations and
logical/Boolean operations.

In the graphical representation of Examplethe comparison function exten-
ded by one additional input is also shown as an equivalent call of three functions.
Here the key words GE and AND are replaced by the symbols “>=" and “&".

5.1 Standard Functions 215

Character string functions

REPLACE
PLCstand—IN1
-3' —IN2
2 —L
10 —P — PLCstand
Instruction List (IL) Structured Text (ST)
LD PLCstand PLCstand:= REPLACE (
REPLACE '-3, 2,10 IN2 :="-3,
ST PLCstand IN1 := PLCstand,
P :=10,
L :=2);

Example Bl12[[Fxample of “REPLACE” inIL and ST

The function REPLACE has no overloaded inputs. When calling this function,
both graphically and in ST, each input parameter must be entered with its name.
Example[5.19 shows that these inputs can then be entered in any order (see ST
example). On the other hand, the order is fixed if there are no input parameter
names (see IL example).
The character string PLCstand has the STRING vaue 'lEC 61131-3' after
execution.

Functionsfor time data types.

DateTime—IN1

Time —{IN2 — DateTime
Instruction List (IL) Structured Text (ST)
LD DateTime
ADD Time DateTime:= DateTime + Time;
ST DateTime

Example B]13[]An example of “ADD Time” in IL and ST

216 5 Standardised PLC Functionality

This time addition function (and also the corresponding subtraction) can be regar-
ded as a continuation of overloaded addition — referring to mixed arguments:
TIME, TIME_OF DAY (TOD) and DATE_AND_TIME (DT).

The variable DateTime has the value DT#1994-12-23-06:00:00 after executing
the function.

The addition and subtraction of time is not symmetrical. For subtraction, as
opposed to addition, there are three additional operations for input data types
DATE, TOD and DT. These operations are not available for addition, as it does
not make much sense to add, for example, 10" October to 12" September.

In addition, it is not possible to add a TIME to a DATE, whereas thisis possible
for TIME, TOD and DT. In order to make this possible with DATE, the input must
first be converted to DT and then added. Possible programming errors in time
calculations can thus be avoided.

Functionsfor enumerated data types

MUX
Scale —K
ColScalel—
ColScale2—
ColScale3— — TraffLight
Instruction List (IL) Structured Text (ST)
LD Scale
MUX (ColScalel, TraffLight := MUX (K := Scale,
ColScale2, ColScalel,
ColScale3) ColScale2,
ST TraffLight ColScale3);

ExampIeE|l4.|]An example of MUX with enumeration

IEC 61131-3 defines functions for the data type enumeration, one of which, the
selection function MUX, is shown in Example5.14]

A variable of data type enumeration (type declaration COLOURYS) is selected
using the INT variable Scale.

After executing MUX the variable TraffLight will have the values “IYelow”,
“Yellow” and “dYellow” from the colour scale (light, normal and dark) when the
variable Scale has the values 0, 1 and 2 respectively.

5.2 Standard Function Blocks 217

Bl2 Standard Function Blocks|

IEC 61131-3 defines several standard function blocks covering the most important
PL C functions (with retentive behaviour).
IEC 61131-3 defines the following five groups of standard FBs:

1) Bistable elements (= flipflops)
2) Edge detection

3) Counters

4) Timers

5) Communication function blocks.

TabIeE3|gives aconcise list of al the standard FBs available in these groups. The
table structure is very similar to the one for standard functions in Table5.3 The
communication FBs are defined in part 5 of IEC 61131 and not dealt with in this
book.

Instead of the data types of the input and output variables, their names are listed
here. These names, together with their corresponding elementary data types, can be
found in Table[5.4]

Name of std. FB with input Names of output Short description
parameter names parameters

Bistable elements

SR (S, R, [Q1) Set dominant

RS (S,R1, [Q1) Reset dominant
Edge detection

R_TRIG {->} (CLK, | Q) Rising edge detection
F TRIG {-<} (CLK, |1 Q) Falling edge detection
Counters

CTU (CU,R,PV, [Q,CV) Up counter

CTD (CD,LD, PV, |Q,CV) Down counter
CTUD (CU,CD,R,LD, PV, [QU,QD, CV) Up/down counter
Timers

TP (IN, PT, [Q,ET) Pulse

TON {T---0} (IN, PT, [Q,ET) On-delay

TOF {0---T} (IN, PT, [Q,ET) Off-delay

RTC (EN, PDT, | Q, CDT) Real-time clock
Communication See|EC 61131-5

TabIeE|3.|]_ist of standard function blocks

| Inputs/ Outputs

|Meaning

| Data type

218 5 Standardised PLC Functionality

R Reset input BOOL

S Set input BOOL
R1 Reset dominant BOOL
Sl Set dominant BOOL

Q Output (standard) BOOL
Q1 Output (flipflops only) BOOL
CLK Clock BOOL
CU Input for counting up R EDGE
CD Input for counting down R EDGE
LD Load (counter) value INT

PV Pre-set (counter) value INT

QD Output (down counter) BOOL
QU QOutput (up counter) BOOL
CcV Current (counter) value INT

IN Input (timer) BOOL
PT Pre-set time value TIME
ET End time output TIME
PDT Pre-set date and time value DT

CDT Current date and time DT

Table El4.[Abbreviations and meanings of the input and output variablesin Table[5.3

The counter inputs CU and CD are of data type BOOL and have an additional
attribute R_EDGE, i.e. a rising edge has to recognised in order to count up or
down.

The return value of each standard FB is zero when the FB is called for the first
time. Only the real-time clock displays the current date and time immediately at its
CDT output (Current Date and Time).

The input parameter names of the standard FBs are keywords. In IL they can be
applied as operators to FB instances, as described in Section @1.4.

The input parameters R and S have a second meaning in IL. There they are also
the operators used to set and reset Boolean variables. This can cause difficulties
that need to be solved when implementing programming systems.

BJ2.2 Examples|

In this section, examples are given to illustrate the calling interfaces of standard
function blocks in the same way as for the standard functions. The subject of FB
calls has already been discussed in detail in Chapter 2.

At least one example is given for each function group in Table Both the
textual languages IL and ST and the graphical representations LD and FBD are
used.

5.2 Standard Function Blocks

219

InIL and ST the FB input parameter names are given explicitly in order to make

the use of FB instances as clear as possible.

In the case of IL, the version of the function block call (see Section@,lA) that
treats input parameters and return values as structure elements of the FB instance

is used.

For the following examples, the PROGRAM ProgFrameFB in Example [5.15 is
used as the basis for the common declaration part for the required variables and

FB instances.

PROGRAM ProgFrameFB

VAR_GLOBAL RETAIN

RealTime RTC;
TimePeriod TIME := t#63ms;

END_VAR

VAR
FlipFlop RS;
Button R_TRIG;
Counter_UD CTUD;
V_pulse TP;
Pulse BOOL;
EmOff BOOL;
AT %IX1.4 BOOL;
AT %IX2.0 BOOL;
AT %IX2.1 BOOL;
AT %IX2.2 BOOL;
AT %IX3.0 BOOL;
AT %IW5 INT;
AT %MX3.2 BOOL;
AT %QX3.2 BOOL;
MaxReached BOOL;
MinReached . BOOL;
CounterValue AT %MW?2 : INT,;
TimerValue TIME;
DateAndTime : DT;

END_VAR

END_PROGRAM

(* common declaration part for std. FBs *)

(* global, battery-backed data *)

(* real-time clock *)

(* 63 milliseconds as initial value *)

(* local data *)

(* flag)

(* edge detection button *)
(* counter up/down *)

(* extended pulse *)

(* pulse flag*)

(* emergency off flag*)

(* emergency off *)

(* count up *)

(* load counter *)

(* start time *)

(* count down *)

(* count limit *)

(* flag *)

(* output *)

(* counter at max. limit *)
(* counter at min. limit *)
(* current counter value *)
(* current timer value *)

(* current date and time *)

(* program body for following examples *)

Example15|]T he common declarations for the examples on the usage of the standard

function blocks

These declaration

- FB instances (from FlipFlop to V_pulse)

S contain:

- Directly represented variables (from %IX1.4 to %QX3.2)

220 5 Standardised PLC Functionality

- Symbolic variable (CounterVvalue)

- General variables (others).

The variables declared in the VAR section are declared as local variables and
those declared in the VAR_GLOBAL RETAIN section are declared as battery-

backed global variables.

Bistable element (flipflop)

FlipFlop
RS

%MX3.2 —S

EmOff —R1 Q1f—%QX3.2

Instruction List (IL)

LD %MX3.2
ST FlipFlop.S
LD EmOff

ST FlipFlop.R1

CAL FlipFlop
LD FlipFlop.Q1
ST %QX3.2

Example 16 [Bistable element (flipflop)

Structured Text (ST)

FlipFlop (S:=%MX3.2,
R1 := EmOff);

Example shows how to use aflipflop to store binary status information, in this

case the value of flag %MX3.2.

Theinput R1 “dominantly” resets the output Q1, i.e. if both inputs are set to “1”

the output remains “0”.

Edge detection

Button
R_TRIG

%IX1.4 —|CLK Q —EmOff

Instruction List (IL)

LD %I1X1.4
ST Button.CLK

Structured Text (ST)

5.2 Standard Function Blocks 221

CAL Button Button (CLK :=%IX1.4);
LD Button.Q
ST EmOff EmOff := Button.Q;

Example p]17JRising edge detection with R_TRIG

FB instance Button of FB type R_TRIG in Example[5.17 evaluates the signal of an
I/O bit and producesa“1” at Q when thereisarising edge (0 - 1 transition). To do
this FB Button uses an internal edge detection flag that stores the “old” value of
CLK in order to compare it with the current value.

Thisinformation is stored for one program cycle (until the next call) and can be
processed by other program parts even if %IX1.4 has aready returned to “0”
again. At the next call in the following cycle, the Button flag will again be reset.
This means that for directly represented variables FB Button can only detect edges
that occur at intervals of at least one program cycle.

IEC 61131-3 provides FBs R_TRIG and F_TRIG not only for immediate usage as
shown in Example 5.17] These FBs are also implicitly used for edge detection to
implement the variable attributes R_EDGE and F_EDGE (see Chapter 3).

Example shows variable declaration using an edge-triggered input (bold

text) within the declaration part of FB ExEdge.

FUNCTION_BLOCK ExEdge
VAR_INPUT
Edge : BOOL R_EDGE; (* edge-triggered *)
END_VAR
VAR_OUTPUT
Flag : BOOL;
END_VAR

LD Edge; (* access to edge flag *)
ST Flag;

END_FUNCTION_BLOCK

Examplep]18JA declaration with R_EDGE for edge detection and usagein IL

To make the use of edge-triggered variables clearer, Example[5.19 shows how
additional instructions which implement edge detection are added to Example
Thisis done — invisibly to the user — by the programming system.

FUNCTION_BLOCK ExEdge

VAR_INPUT

Edge . BOOL; (* edge-triggered *)
END_VAR

VAR_OUTPUT

Flag . BOOL;

END_VAR

222 5 Standardised PLC Functionality
VAR
EdgeDetect: R_TRIG; (* FB instance "rising edge" *)
END_VAR
CAL EdgeDetect (CLK := Edge); (* FB call for edge detection *)
LD EdgeDetect.Q; (* load detection result from FB instance *)
ST Flag;

END_FUNCTION_BLOCK

Examplep]19] utomatic extension of Example.18lusing R_TRIG

The declaration of FB EdgeDetect in Example is inserted implicitly and
invisibly by the programming system. This FB is called with input variable Edge.
Its output value EdgeDetect.Q is then used wherever the value Edge is originally

accessed.

This example shows why IEC 61131-3 does not allow this kind of edge
detection for output variables: these variables could be overwritten at any point
within the POU. This would, however, violate the rule that FBs are not allowed to

change the outputs of other called FBs! See also Section3.2.

Counter
Counter_UD
CTUD
%I1X2.0 >CU QU — MaxReached
%IX3.0 — NOT—>CD QD |—MinReached
%IX1.4 R
%IX2.1 LD
%IW5 PV CV — CounterValue
Instruction List (IL) Structured Text (ST)
LD %I1X2.0
ST Counter_UD.CU
LDN %I1X3.0
ST Counter_DU.CD
LD %IX1.4
ST Counter_DU.R
LD %I1X2.1
ST Counter_DU.LD
LD %IW5
ST Counter_UD.PV
CAL Counter_DU Counter_UD (CU :=%IX2.0

CD := NOT(%IX3.0),

5.2 Standard Function Blocks 223

R = %IX1.4,
LD Counter_UD.QU LD := %IX2.1,
ST MaxReached PV := %IW5);
LD Counter_DU.QD
ST MinReached MaxReached := Counter_UD.QU;
LD Counter_UD.CV MinReached := Counter_UD.QD;
ST CounterValue CounterValue := Counter_UD.CV;

Example. |5.20.|The up/down counter CTUD

In this example, each input of the up/down counter Counter_UD is used. Thisis,
however, not always necessary.

The inputs CU and CD can be activated simultaneously by arising edge. In this
case the current counter value would not change if the minimum or maximum had
not already been reached.

Counter_UD in Example [5.20 counts up with each rising edge at %Ix2.0 and
counts down with each falling edge at %I1X3.0. The pre-set counter value at PV is
loaded from %IWS5 if the load input LD is active when the FB is called. No rising
edge is needed in this case.

Timer

Example[p.21)is an example of the usage of timer FBs. It demonstrates clearly how
instances of timers maintain their values, especially those of the input parameters,
between cdlls.

In principle, each input variable of a timer (or any FB) can be set immediately
before calling. Such run-time parameter changes could be used to alow the same
timer to be used to control several process times simultaneously. Such program-
ming is, however, seldom used in practice as it makes the program difficult to read
and can easily lead to errors.

It is sufficient to set the pre-set timer value PT for each instance only once, with
thefirst call, and then to re-use it for later invocations. This means that calling the
timer primarily serves to start the timer with input IN.

The output variables of a timer can be checked at any point in the program, i.e.
they need not be evaluated immediately after calling the timer.

The output parameters are set at each call of the timer FB, i.e. they are updated
with the current values of the physical timer running in the background. The timer
value may therefore become obsol ete between two timer calls. Therefore, in order
to avoid distorting the desired time control, it must be ensured that the timer FB is
called sufficiently frequently in a periodic task, not too long before Q or ET are
evaluated.

Output Q shows whether the time has elapsed or not, and output ET shows the
time still remaining.

Timers are thus usually called in the following steps:

224 5 Standardised PLC Functionality

1) Setting of the timer value
2) Periodic starting with updating
3) Checking of the timer values.

In a PLC program executing periodically, these three steps are often combined in a
single call. This simplifies the program and makes the graphical representation
easer.

The behaviour of the different timersis shown in more detail in Appendix B.

V_pulse
TP

%IX2.2 —{IN Q —Pulse
TimePeriod —{PT ET[—TimerValue

Instruction List (IL) Structured Text (ST)
(* 1. set pulse length *) (* 1. set pulse length *)
LD TimePeriod V_pulse.PT := TimePeriod;
ST V_pulse.PT
(* 2. start timer *)
LD %IX2.2
ST V_pulse.IN (* 2. start timer *)
CAL V_pulse V_pulse (IN :=%IX2.2);
(* 3. get current timer value *) (* 3. get current timer value *)
LD V_pulse.Q
ST Pulse Pulse := V_pulse.Q;
LD V_pulse.ET
ST TimerValue TimerValue :=V_pulse.ET;

Examplep]21[creating pulses using the timer TP

Example[5.21]shows the three steps required when using the instance V_pulse:

1) Thetimer valuefor V_pulse is pre-set to 63 milliseconds.
2) V_pulse is started by input bit 2.2.
3) V_pulse isevaluated by checking Q and ET.

Example[5.22]shows an example of the use of the timer FB RTC (real-time clock).

5.2 Standard Function Blocks 225

RealTime
RTC
%IX2.2 —IN Q NOT TimerError
dt#1994-01-11-12:00:00.00 —PDT CDT DateAndTime

Instruction List (IL)

Structured Text (ST)

(* 1. set date *) (* 1. set date *)
LD dt#1994-01-11-12:00:00.00 RealTime.PDT := dt#1994-01-11-12:00;
ST RealTime.PDT
(* 2. start clock *)
LD %I1X2.2
ST RealTime.IN (* 2. start clock *)
CAL RealTime RealTime (IN :=%IX2.2);
(* 3. get time *) (* 3. get time *)
LD RealTime.Q IF RealTime.Q THEN
JMPCN TimerError DateAndTime := RealTime.CDT;
LD RealTime.CDT ELSE
ST DateAndTime (* TimerError *)
JMP Anywhere ENDIF
TimerError:

Example]22[Jrimer: real-time clock RTC

On arising edge at %I1X2.2 the date constant NewDate will pre-set the timer at the
input PDT. Aslong asIN remains “1”, the current date and time can be read at the
output CDT.

The output Q is used to check whether the current date is till valid (Q is a copy
of IN). If the dateisinvalid, the program jumps to the error routine TimerError.

blState-of-the-Art PL C Configuration |

IEC 61131-3 takes advantage of recent advances in technology by incorporating
modern concepts that allow the modelling of PLC projects consisting of more than
just single-processor applications.

The software model of IEC 61131-3 allows for practice-oriented structuring
(modularization) of applications into units (POUs). This eases maintenance and
documentation, and improves the diagnostics facilities for PLC programs.

An uniform software architecture is essential for portability of applications. The
resources of PLCs are given explicit run-time properties, thus building a platform
for hardware-independent programs.

In the traditional method of structuring PLC projects (see Figure 2.5), appli-
cations are modularised into blocks, and certain types of blocks (e.g. organisation
blocks) have implicit run-time properties. IEC 61131-3 provides more sophisti-
cated and standardised means of accomplishing this.

This chapter explains the configuration elements of 1EC 61131-3, which are an
important means of structuring applications and defining the interaction of POUSs.
Configuration elements describe the run-time properties of programs, communi-
cation paths and the assignment to PLC hardware.

IEC 61131-3 configuration elements support the use of today’s sophisticated
operating systems for PLCs. A typical PLC today can run multiple programs at the
same time (multitasking).

E|1 Structuring Projectswith Configuration Elementsl

The preceding chapters have discussed the programming and usage of POUs. This
section gives an overview of the modelling and structuring of PLC applications at
ahigher level.

To do this, Figure ﬂ.? (POU calling hierarchy) needs to be seen within the
context of the PLC program as awhole:

228 6 State-of-the-Art PLC Configuration

Configuration elements

Configuration

Resource

Task/
Runtime program

7~ X

Program Function
block
] I
Function Function
block block
]
Function Function

Figure E]l. eraII structure of PLC programs according to IEC 61131-3, including POUs
and configuration elements

As shown in Figure , the configuration elements configuration, resource and
task are hierarchically located above the POU level.

While POUs make up the calling hierarchy, configuration elements assign
properties to POUSs:

- PROGRAMsand FBs are assigned run-time properties
- Communication relationships are defined between configurations
- Program variables are assigned to PL C hardware addresses.

First, we will describe the structure and meaning of the configuration elements
themselves.

Bl2 Elements of a Real-World PLC Configuration|

Configuration elements match the elements found in real-world PLC systems:

- Configuration: A PLC system, e.g. a controller in a rack with multiple
CPUs, controlling a cell of machines
- Resource: One CPU inaPLC, possibly capable of multitasking

6.2 Elements of a Real-World PLC Configuration 229

- Task Run-time properties for programs and function blocks
(“type” of PLC program)

- Run-time program: Unit consisting of a PROGRAM or
FUNCTION_BLOCK and the TASK associated with it

The main programs of a CPU are made up of POUs of type PROGRAM. Larger
applications tend to be structured in Sequential Function Chart, controlling the
execution of the other POUs.

Main programs and function blocks are assigned run-time properties, like “cyclic
execution” or “priority level”, asindicated in Fi gure

The term “run-time program” denotes the unit consisting of all the necessary
POUs and the TASK, i.e. a program together with its run-time properties. A run-
time program is therefore a self-contained unit capable of running independently in
aCPU.

Figure shows the relation between configuration elements and the
components of real-world PLC systems (see also Figure E.4):

Program Task

Resource / /

(CPU) PROGRAM ProgA TASK TaskB
VAR_INPUT ... INTERVAL ...
CALFB... PRIORITY ...

8@00

PROGRAM ProgA WITH TaskB;

[Run-time program

[l
Beoo
Beoo

|

Configuration
PLC system)

Figure BZ Eeal -world configuration. ProgA and TaskB are linked to form arun-time
program and assigned to a CPU resource in a PLC system

The actual assignment of configuration elements to the elements of a PLC system
will depend on the hardware architecture.

Using configuration elements, all tasks can be assigned to one CPU which will
execute them simultaneously, or they can be assigned to different CPUs.

230 6 State-of-the-Art PLC Configuration

Whether a RESOURCE is to be regarded as one CPU or a group of CPUs con-
tained in one rack therefore depends on the concrete PLC hardware architecture.

For small PLC systems, al configuration can be done in one POU of type
PROGRAM: programs can declare global variables and access paths, and directly
represented variables. The definition of run-time properties, CPU assignment, etc.
can be performed implicitly by features of the programming system or PLC. This
corresponds to the traditional approach for programming PLCs.

This capability of PROGRAM POUs facilitates gradual migration from existing
applications to |EC 61131-3-compliant programs.

Bl3 Configuration Elements|

We will first give an overview of the configuration elements, and then explain
them in more detail. We will refer to the example in Section

Bl3.1 Definitions|

The functions of the configuration elements are as follows:

Configuration Element | Description

Configuration - Definition of global variables (valid within this
configuration)

- Combination of all resources of aPLC system

- Definition of access paths between configurations

- Declaration of directly represented variables

Resource - Definition of global variables (valid within this resource)
- Assignment of tasks and programs to a resource
- Invocation of run-time programs with input and output

parameters
- Declaration of directly represented variables
Task - Definition of run-time properties
Run-time program - Assignment of run-time properties to a PROGRAM or

FUNCTION_BLOCK

Table Ell. Eéfinition of configuration elements. Directly represented global variables and
access paths can also be defined within a PROGRAM.

6.3 Configuration Elements 231

Declaration of directly represented variables maps the entire configuration to the
hardware addresses of the PLC. These declarations can be made at the configura-
tion, resource or PROGRAM level. POUs can access these viaVAR_EXTERNAL
declarations.

When put together, the declarations of directly represented variables for all the
POUs make up the alocation table of a PLC application. Rewiring, i.e. re-
assigning symbolic addresses to absolute PLC addresses, can be carried out by
simply modifying thislist.

Configuration elements are typically declared in textual form. The standard
provides a definition for a graphical representation of a TASK, but the graphical
representation of all other configuration elements is left to the programming
system and is therefore implementati on-dependent.

B]3.2 The CONFIGURATION|
IEC 61131-3 uses the Configuration (CONFIGURATION) to group together all

the resources (RESOURCE) of a PLC system and provide them with means for
data exchange. A configuration consists of the elements shown in Fi gure@

CONFIGURATION Configuration name

Type definitions
Global declarations

RESOURCE declarations

ACCESS declarations

END_CONFIGURATION

Figure pB. Bructure of a CONFIGURATION declaration

Within a configuration, type definitions with global validity for the entire PLC
project can be made. Thisis not possible in other configuration elements.

Communication between configurations takes place via access paths defined
with VAR_ACCESS. Variables defined with VAR_GLOBAL are valid only with-
in one configuration, and are accessible to all resources, programs and function
blocks of that configuration. VAR_EXTERNAL cannot be used at the configura-
tion level.

232 6 State-of-the-Art PLC Configuration

Communication blocks for communication between configurations are defined
in part 5 of IEC 61131 (see also Section[6.5).

CONFIGURATION PLC_Celll
VAR_GLOBAL ... END_VAR
RESOURCE CPU_Conveyor ON CPU_001 ... END_RESOURCE
RESOURCE CPU_Hammer ON CPU_002... END_RESOURCE
VAR_ACCESS ... END_VAR

END_CONFIGURATION

Example]1[Flements of the CONFIGURATION in Example[6.6]

Exampleshows part of the declaration of a configuration named PLC_Cell1.

It contains a section with global variables, which are not visible to other confi-
gurations, but only accessible from resources CPU_Conveyor and CPU_Hammer
and all POUs executing on them.

VAR_ACCESS is used for exchanging data between the resources of the same
configuration or different configurations (access paths)

Configurations and resources do not contain instructions like POUs, but solely
define the relations between their elements.
Bl3.3 The RESOURCH

A Resource is defined in order to assign TASKsto the physical resources of aPLC
system. A resource consists of the elements shown in Figure[6.4]

RESOURCE Resource name ON Resource

Global declarations

TASK declarations

END_RESOURCE

Figure E]4.|]Structure of aresource declaration

The resource name assigns a symbolic name to a CPU in a PLC. The types and
numbers of the resources in a PLC system (individual CPU designations) are

6.3 Configuration Elements 233

provided by the programming system and checked to ensure that they are used
correctly.

Global variables, which are permissible at resource level, can be used for
managing the data that are restricted to one CPU.

Example [6.2] shows part of the declaration of two resources. The global data
declared for resource CPU_002 cannot be accessed from resource CPU_001.

The keyword PROGRAM has a different meaning within a resource definition
than it has at the beginning of a POU of type PROGRAM!

Within a resource declaration, the keywords PROGRAM ... WITH are used to
link atask to a POU of type PROGRAM.

RESOURCE CPU_Conveyor ON CPU_001
TASK ...
PROGRAM ... WITH ...
END_RESOURCE
RESOURCE CPU_Hammer ON CPU_002
VAR_GLOBAL ... END_VAR
TASK ...
PROGRAM ... WITH ...
END_RESOURCE

Example]2 [JElements of the resourcesin Example[6.6]

E|3.4 The TASK with run-time programl

The purpose of a TASK definition is to specify the run-time properties of pro-
grams and their FBs.

The normal practice with PLC systems hitherto has been to use special types of
blocks (e.g. organisation blocks, OBs), with implicit, pre-defined run-time proper-
ties. For example, they can be used to implement cyclic execution, or to make use
of properties of the PLC system for interrupt handling or error responses.

A TASK definition according to |EC 61131-3 enables these program features to
be formulated explicitly and vendor-independently. This makes program documen-
tation and maintenance easier.

Figure[6.5 shows the structure of atextual TASK declaration:

234 6 State-of-the-Art PLC Configuration

TASK Task name (Task properties)

PROGRAM Program name WITH Task name : (PROGRAM interface)

Figure E]S.ﬂ;tructure of atextua declaration of arun-time program, defining atask and
associating the task with a PROGRAM. The task properties give the parameter values of
the task, the PROGRAM interface gives the actual parameters for the formal parameters.

The association of a TASK with a PROGRAM defines a run-time program with
the name Program name. This is the instance name of the program of which the
caling interface is given in the declaration. This interface includes input and
output parameters of the POU of type PROGRAM and is initialised when starting
the resource.

One PROGRAM can be executed in multiple instances (run-time programs) using
such declarations.

A task can be defined textualy, as shown above, or graphically, as shown in
Figure@ The task properties are shown as inputs to a box, but the graphical
representation of the association with a program (PROGRAM...WITH...) is not
defined by IEC 61131-3.

Taskname T_Cyclic T_Interrupt
TASK TASK TASK

BOOL —]SINGLE —SINGLE Trigger—] SINGLE
TIME —]INTERVAL t#20ms— INTERVAL —INTERVAL
UINT —]PRIORITY 2 —PRIORITY 1 —]PRIORITY

Figure E]G[br hical declaration of atask. Left: General form. Centre and right: Two tasks
from Example%

The input parameters for tasks shown in Tabl are used for specifying the task
properties.

6.3 Configuration Elements 235

TASK Parameter | Meaning

SINGLE On arising edge at thisinput programs associated with the TASK
will be called and executed once.
INTERVAL If atime value different from zero is supplied, al programs associa-

ted with the TASK will be executed cyclically (periodicaly). The
value supplied isthe interval between two invocations. Thisvalue
can thus be used to set and monitor cycle time. If theinput valueis
zero, the programs will not be called.

PRIORITY This input defines the priority of the associated programs compared
to other programs running concurrently (multitasking). The meaning
is implementation-dependent (see text).

Table EIZ.ﬂI’ASK properties as input parameters

The meaning of the PRIORITY input will depend on how concurrency of multiple
programs is implemented in the PLC system, and is therefore implementation-
dependent. If atask with a priority higher than that of the task currently executing
is activated, there are in principle two ways of resolving this conflict between tasks
on the same CPU. It depends on the ability of the PLC system to interrupt a
running task:

1) The task currently executing is interrupted immediately, to start execution of
the task with higher priority. Thisis called pre-emptive scheduling.

2) The task currently executing is not interrupted, but continues normally until
termination. Only then will the task with the highest priority of all waiting tasks
be executed. Thisis called non-pre-emptive scheduling.

Both methods give the task with the highest priority control of the requested re-
source. If atask with the same priority as the task currently executing is scheduled
to execute, it has to wait. If tasks with the same priority are waiting to execute, the
one which has been waiting longest will be executed first.

TASK T_Quick (INTERVAL :=t#8ms, PRIORITY :=1);
PROGRAM Motion WITH T_Quick : ProgA (RegPar := %MW3,
R_Val => ErrorCode);

TASK T_Interrupt (SINGLE := Trigger, PRIORITY := 1);
PROGRAM Lube WITH T_Interrupt : ProgC;

Example Bl3[Elements TASK and PROGRAM...WITH... from Example6.6]

In Example two tasks T_Quick (cyclic with short cycle time) and T_Interrupt
(interrupt task with high priority) are defined.

236 6 State-of-the-Art PLC Configuration

T_Quick is started every 8 milliseconds. If execution of the program Motion
associated with it takes longer than this time (because of interruptions by tasks
with higher priority, for example), the PLC system will report a run-time error.

Program Lube has the same priority as Motion, so it has to wait if input Trigger
changesto TRUE.

Within the assignment of a program to a task, actual parameters can be specified,
as shown here for RegPar of ProgA with a directly represented variable. At run
time, these parameters are set on each invocation of the run-time program. In con-
trast to FBs, output parameters can be specified as well as input parameters, and
these are also updated at the end of the program. In Example[6.3, this will be done
for R_Val of ProgA. Assignments of output parameters to variables are specified
with “=>" instead of “;:=" to distinguish them from input parameters.

If a PROGRAM is declared with no TASK association, this program will have
lowest priority compared to all other programs and will be executed cyclically.

E|3.5 ACCESSdeclar ationsl

The VAR_ACCESS ... END_VAR language construct can be used to define
access paths to serve as transparent communication links between configurations.
Access paths are an extension of global variables, which are valid within one
configuration only. For access paths, read and write attributes can be specified.
Variables of one configuration are made known to other configurations under
symbolic names.

VAR_ACCESS
ConvEmpty . CPU_Conveyor.%IX1.0 : BOOL READ_ONLY;

\) Data type and read/write
Variable to be accessed permission for access

from outside path
Name of access

path

END_VAR

ExampIeE|4[|DecI aration of an access path

Example shows the structure of a declaration of an access path using variable
ConvEmpty from Example

6.4 Configuration Example 237

Access paths can be defined for the following types of variables:

- Input and output variables of a PROGRAM
- Global variables
- Directly represented variables.

Access paths publish these variables under a new name beyond the scope of a con-
figuration, so that they can be accessed using communication blocks, for example.

If avariable is a structure or an array, an access path can access only one single
member or array €lement.

By default, access paths allow only read access (READ_ONLY permission). By
specifying READ_WRITE, write operations on this variable can be explicitly
allowed.

This permission must be specified immediately after the data type of the access
variable. The data type of the access variable must be the same as that of the
associated variable.

E|4 Configuration Examplel

Example shows an overview of a configuration. This example is declared
textually in Examples [6.7] and [6.6, The configuration consists of a PLC system
with two CPUs, which are assigned several programs and function blocks. Parts of
this example have already been discussed in previous sections of this chapter.

238 6 State-of-the-Art PLC Configuration

Configuration PLC_Celll
I I
Resource CPU_Conveyor CPU_Hammer
I I I
Task T Quick T_Cyclic T_Interrupt
Run-time program Motion __Control | Lube
Program ProgA | ProgB ProgC
Function FB1 | | FB2
block

Example]5[[Example of configuration elements with POUs (overview)

In Example 5.6} PLC_Cell1 physically consists of 2 CPUs. The first CPU can exe-
cute two tasks: one fast cyclic task with a short cycle time, and one slower cyclic
task. The second CPU executes one task with interrupt property.

6.4 Configuration Example 239

CONFIGURATION PLC_Celll

VAR_GLOBAL
ErrorCode : DUINT;
AT %MW3 . WORD;
Start : INT;
END_VAR
RESOURCE CPU_Conveyor ON CPU_001
TASK T_Quick (INTERVAL :=t#8ms, PRIORITY :=1);
TASK T_Cyclic (INTERVAL := t#20ms, PRIORITY := 3);

PROGRAM Motion WITH T_Quick : ProgA (RegPar := %MW3);
PROGRAM Control WITH T_Cyclic : ProgB (InOut := Start,
R_Val => ErrorCode,
FB1 WITH T_Quick,
FB2 WITH T_Cyclic);
END_RESOURCE

RESOURCE CPU_Hammer ON CPU_002
VAR_GLOBAL
Trigger AT %IX2.5: BOOL;
END_VAR
TASK T_lInterrupt (SINGLE := Trigger, PRIORITY :=1);
PROGRAM Lube WITH T_Cyclic : ProgC;
END_RESOURCE

VAR_ACCESS
RegP : CPU_Conveyor.Motion.RegPar: WORD READ_WRITE;
CONV_EMPTY: CPU_Hammer.%IX1.0 : BOOL READ_ONLY;
END_VAR

END_CONFIGURATION

Example [l6[Jrextual declaration of Example 6.5 Names of variables, programs and FBs
are printed in bold type.

PROGRAM ProgA PROGRAM ProgB PROGRAM ProgC
VAR_INPUT VAR_IN_OUT
RegPar : WORD; InOut : INT;
END_VAR END_VAR
VAR_OUTPUT
R_Value : DUINT;
END_VAR
CAL Inst_FB2 CAL Inst_FB3
END_PROGRAM ENb_PROGRAM END_PROGRAM

Example [6]7[Programs for Example[6.6} FB3 is not shown there, FB1 could implement
error handling, for example.

240 6 State-of-the-Art PLC Configuration

In this example, run-time programs Motion, Control and Lube are created by
associating programs ProgA, ProgB and ProgC respectively with atask definition.

Program Motion and FB instance FB1 (independent of program Control) are
executed on CPU_Conveyor as quick tasks (T_Quick). FB2 of program Control is
executed on the same CPU (CPU_001) as a cyclic task (T_Cyclic). Program
Control is used here to define the run-time properties of the FB tasks involved.
Function block instances associated with tasks in this way are executed
independently of the program.

With every cyclic invocation of run-time program Control, the input parameter
InOut is set to the value of variable Start. After termination of Control, the value of
output parameter R_Val is assigned the variable ErrorCode.

On CPU_Hammer (the second CPU), program Lube is executed as an interrupt-
driven task (T_lInterrupt). FB3, being part of ProgC, automatically inherits the same
run-time behaviour.

In this example, CPU_001 and CPU_002 are not variables, but manufacturer-
defined names for the CPUs of PLC_Cell1.

Bl5 Communication between Configurations and POUs|

This section describes the means of exchanging data between different confi-
gurations and within one configuration, using shared data areas.

Such (structured) data areas are used for communication between different pro-
gram parts, for exchange of data, for synchronisation and to support diagnostics.

It isthe aim of IEC 61131-3 to provide a standardised communication model and
thus enabl e the creation of well structured PLC programs, which facilitate commis-
sioning and diagnostics and provide better documentation.

Modularization of applications eases re-use, which helps to reduce the time
taken to develop new applications.

IEC 61131-3 defines several ways of exchanging data between different parts of a
program:

- Directly represented variables,

- Input and output variables, and the return value, in POU calls,
- Global variables (VAR_GLOBAL, VAR_EXTERNAL),

- Access paths (VAR_ACCESS),

- Communication blocks (IEC 61131-5),

- Call parameters.

6.5 Communication between Configurations and POUs 241

The first three methods are for communication within one configuration, while
access paths and communication blocks are intended for communication between
different configurations, or with the outside world.

Directly represented variables are not really intended to be used for communi-
cation between different parts of an application, but they are included in this list
because their use is theoretically possible. Writing to PLC inputs (%l...) is not a
suitable method. Outputs (%Q...) should be used to control the process, and not for
temporary storage of internal information.

As Table[6.3 shows, these methods can be used at several levels, and the different
configuration elements and POUs have different rights of access.

Communication method CONF | RES | PROG FB FUN
Access path X X

Directly represented variable X X X

Global variable X X X

External variable X X
Communication block X X

Call parameter X X X X

Key: CON: CONFIGURATION
RES: RESOURCE
PROG: PROGRAM
FB: FUNCTION_BLOCK
FUN: FUNCTION

TabIeE|3.|]30mmunication methods available to configuration elements and POUSs.

Access paths are used for exchanging data between configurations, i.e. across the
boundaries of one PLC system, and can be used at configuration and program
level.

Directly represented variables of a PLC (i.e. %l, %Q and %M) alow limited
communication between different parts of an application, as they can be accessed
globally on one system. Flags (%M) can be used for synchronising events, for
example.

These variables may only be declared at program level or higher (i.e. globally),
and function blocks may only access them with an external declaration. Thisis one
important difference between IEC 61131-3 and previous PLC programming
practice.

Global variables can be declared for configurations, resources and programs, and
can be used at these levels.

242 6 State-of-the-Art PLC Configuration

Function blocks can access these variables (read and write) with an external
declaration, but they cannot declare them themselves. Functions have no access to
global or external variables.

External variables can be imported by programs and function blocks if they have
been declared globally elsewhere.

Communication blocks are special function blocks used to transfer packets of data
from the sender to the recipient. Asthese FBs are linked to one program, they are
local to one configuration and not visible outside.

The definition of such standard communication blocks is contained in Part 5 of
IEC 61131 (Communication Services).

Call parameters are used as input and output parameters when calling POUs. They
can be used for transferring data into and out of a POU.

As explained in Chapter 2, parameter assignment to input variables and the
checking of output variables of afunction block can take place independently of its
invocation, thereby resulting in characteristics of a communication mechanism
which was previously beyond the capabilities of PLC programming.

Resources can pass values to programs when they are associated with tasks, as
shown for Motion in Exampl e. With every invocation, the values are passed as
actual parameters or read as output parameters.

7l nnovative PL C Programming Systems]|

This chapter goes beyond the specifications of IEC 61131-3 and outlines the
general requirements placed on the new generation of PLC programming systems
in the marketplace. These mainly stem from the special conditions to be met in the
PL C environment using the new standard-compliant technology.

[7]1 Requirements of Innovative Programming Tools|

The performance of a PLC programming system can be judged by three criteria:

- Technological innovation,
- Fulfilment of PLC-specific requirements,
- Cost/benefit ratio.

This chapter discusses these features and outlines the most important components
of a PLC programming system.

Language Compiler, Test & Com- Project Device Documen-
Editors Linker, missioning Manager Manager tation
System Communic.
Configurator Manager

Abb. ﬂl. Important components of modular PLC programming systems

244 7 Innovative PLC Programming Systems

[7]2 Technological Change|

The rapid advances in PC technology have influenced PLC programming systems
aswell as other areas of computing technology. Important new developments are:

1) Increased processor performance,

2) Full-graphics display and printout,

3) High-performance operating systems,
4) Uniform user interfaces.

[7]2.1 Processor performancq

The increased performance of today’'s PC processors makes it possible to use
advanced graphical editors that can display complex structures graphically on
screen.

In addition to the programming languages that have been in use for yearsin PLC
programming — low-level languages like Instruction List and graphical languages
like SFC, Ladder or Function Block Diagram — high-level languages can now be
employed to create efficient code, making optimum use of special features of PLC
processors and PL C operating systems.

[7]2.2 Full-graphics display and printout|

The screen display or printout can be enlarged or reduced at will using zoom
functions. The enhanced resolution compared to character-graphics alows more
information to be displayed at once on screen or paper.

The visible screen window shows only a small part of the virtualy unlimited
working area, which can be scrolled horizontally and vertically. Especially when
using graphical programming languages, this enables much more complex logic to
be developed.

|Z|2.3 Operating systems

Systems based on MS-DOS were always hampered by the 640 KB restriction,
which could only be evaded by cumbersome custom memory management.
Windows, the current standard, dispenses with this limitation.

All the new operating systems support multi-tasking, which alows the
programming tools to have multiple tasks executing concurrently, synchronised at
defined program points.

[7]2.4 Uniform user interfaces

7.3 Decompilation (Reverse Documentation) 245

The SAA/CUA industry standard introduced by IBM defined a uniform user
interface for software, regardless of whether it was being executed on a personal
computer or a mainframe.

Similar functions are invoked by the same keys (e.g. help function via function
key F1). A universal screen layout (menus, toolbars...) makes it easier for users to
familiarise themselves with different software packages, and they are supported by
extensive help systems. Uniform dialog boxes have simplified interaction between
users and software.

As Windows (95, 98, 2000, NT) provides the basis for amost al new
|EC 61131-3 programming systems, they are becoming increasingly similar for the
user to handle. Identical menu items or keyboard shortcuts are used for copying,
pasting or finding data. The menu bars have the structure familiar from many
standard software packages (Word, Excel for Windows,...).

[7]3 Decompilation (Rever se Documentation)|

Reverse documentation is a traditional requirement of the PLC market. Idedly, it
should be possible to read out a PLC program directly from the controller, in order
to modify it on-site at the machine, for example, far away from the office where it
was developed. Maintenance personnel want to be able to read, print and modify
the PLC program without having the original sources available on a PC.

Decompilation is the ability to retrieve al the information necessary to display and
edit a POU directly from the PLC.

IL Code INTEL 8086 Mnemo-Code (source)
VAR
V1, V2, Vst: SINT,;
END_VAR
LD V1 MOV AL, V1
AND V2 AND AL, V2
ST Vst MOV Vst, AL

Example Ell.[lExample of decompilable source code. Additional information about the
variables is necessary (name, address, type)

246 7 Innovative PLC Programming Systems

Decompilation services can be graded according to the facilities offered:

- No decompilation,

- Decompilation with symbols and comments,
- Decompilation including graphics,

- Sources stored in the PLC.

IZ|3.1 No decompilationl

Most new IEC 61131-3 programming systems do not support decompilation. The
number of symbolic names required to decompile a program has steadily grown
and they cannot be stored in the limited memory available on controllers.

It is rare to find PLCs with processor chips specialy developed by the manu-
facturer (e.g. ASIC or hit slice) and using their own specially written machine
code. For cost reasons it is more common to use standard processors. It is much
more difficult to decompile the machine code from these standard processors back
to Instruction List or Structured Text than it is with custom processors.

It is essential to be able to modify programs after commissioning. It is currently
state of the art to keep al information related to a project (sources, libraries,
interface and configuration information) on a hard disk drive. Idealy, the sources
should be in a language-independent form so that they can be displayed in any
programming language. Precautions must be taken in the software to ensure that
the program on the controller and the program saved on the hard disk are identical
before allowing modification.

|Z|3.2 Decompilation with symbols and comments

The binary code of a program as read out from the PLC will not suffice to create a
compilable source. The PLC should provide lists specifying the current wiring
(CONFIGURATION). This includes the assignment of symbolic variables to
physical addresses, globa variables, the mapping of programs to tasks and
resources, etc.

Symbolic information (like variable names and jump labels) is typicaly not
contained in the executable code. A symbol table, created during program deve-
lopment and sometimes including comments on declarations and instructions, must
be stored in the PLC to enable decompilation of the program direct from the PLC.

|Z|3.3 Decompilation including graphics
Tghe PLC contains executable code. To be able to display this code graphically (in

Ladder, Function Block Diagram or SFC), the code must either conform to certain
syntax rules or it must be augmented by additional information. Using the first

7.4 Language Compatibility 247

method results in shorter programs, but restricts the facilities for graphical repre-
sentation.

[7]3.4 Sources stored in the PLC

The complex architecture of today’s IEC 61131-3 programming systems makes it
more and more difficult to pack al the information into the binary code. To have
al the information needed for decompilation available on the PLC, a simple
solution is to store the entire project information in compressed format in a
separate slow, low-cost memory within the PLC. From there, this information can
easily be transferred to the PC and edited using the programming system in the
same way as during program devel opment.

[]4 L anguage Compatibility

The five languages of IEC 61131-3 have a special relationship with one another.

Sequential Function Chart with its two methods of representation (textual and
graphical) is different from the other languages because it is not used for for-
mulating calculation algorithms, but for structuring programs and controlling their
execution.

The logic operations and cal culations themselves are defined in one of the other
languages and invoked from SFC via action blocks, see Examples[4.51 and 4]52 in
Section 4 6.6.

Each program consists of blocks (POUSs), which invoke each other by means of
calls. These blocks are independent of each other and can be written in different
languages, even languages not defined by IEC 61131-3, provided the calling
conventions of IEC 61131-3 are observed.

IEC 61131-3 does not go beyond defining common calling interfaces between
blocks written in different languages. The question is:
Isit necessary to be able to display code written in one IEC 61131-3 language
in another |EC 61131-3 language?

The use of different languages within the same program and the ability to display,
print and edit POUs in any IEC 61131-3 language is discussed in the next two
sections under the headings Cross-compilation and Language independence.

[7]4.1 Cross-compilatior]

248 7 Innovative PLC Programming Systems

IEC 61131-3 does not require that a POU developed in one language should be
able to be displayed in another language. The argument about the need for this has
been going on as long as PL Cs have been in existence.

What are the reasons for asking for this feature?

The motivation for cross-compilation

One important reason for wanting to be able to cross-compile parts of a program
are the different levels of education and areas of activity of technicians and engi-
neers. Depending on their field, they tend to be trained in different programming
languages, making it difficult for them to work together.

In the automotive industry in the US, Ladder Diagram is the preferred language,
while the same industry in Europe prefers Instruction List or Structured Text. In
the plant construction industry, a functional language like FBD will be preferred.
A computer scientist should have no difficulties using Structured Text. So, do we
need a different language for every taste, but with editing facilities for all?

Some languages are better suited for certain problems than others. For example,
memory management routines are obviously easier to read and write in IL or ST
than in Ladder Diagram. A control program for a conveyor is clearer in Ladder
Diagram than in ST. SFC is the best choice for a sequential control system.

In many cases, it is not so easy to select the right language. The same section of
aprogram is frequently even needed by different users.

For example, a PLC manufacturer may provide POUs written in IL to support
users in handling I/0O modules. The user may be a conveyor belt manufacturer,
using the PLC to monitor and control limit switches and motors, and preferring to
work with Ladder Diagram. So the programmer modifies the code provided in IL
to his needs, using Ladder Diagram to do so. The conveyor may then be supplied
to a plant construction company where all programs are written in FBD, and the
1/O control programs will be required for complete and uniform documentation.

IL:
LD Varl
OR Var2
AND Var3 (* Comment *)
ST Coil

7.4 Language Compatibility 249

ST:
Colil := (Varl OR Var2) AND
(* Comment *) Var3;

LD:
0002

(* Comment *)

Varl Var3 Coil

O

Var2

FBD:
0002

(* Comment *)

Varl >=1

Var2

Var3 Cail

Example EIZ.DExampIe of cross-compilation between four different languages of

IEC 61131-3

Different approachesin graphical and textual languages.

One difficulty with cross-compilation lies in the different ways of looking at a
calculation. LD and FBD have their roots in Boolean or analogue value pro-
cessing: there is “power flow”, or not; values are propagated and calculated in
parallel. Textua languages, like IL and ST, are procedural, i.e. instructions are

executed one after the other.

This becomes obvious when looking at the network evaluation in Section 4.4,
Example[7.3]gives an example in Ladder Diagram (FBD would be similar).

250 7 Innovative PLC Programming Systems

LD Varl 0001:

JMPC Labell varl

ST var2 —]——T—>> Labenn

AND Var3

JMPC Label2 Var2
(\
\/

a) IL b) LD

Example [7]3[Jsequential execution of a program section in IL compared to parallel
execution of anetwork in Ladder Diagram. This makes cross-compilation difficult.

According to the evaluation rules given for graphical languages (see Section
@4.4), Var2 will aways be assigned a value. If this network is converted from IL
asit stands, Var2 will be assigned avalue only if Varl equals FALSE. Otherwise it
would be necessary to rearrange the elements before cross-compiling (all ST
instructions before a conditional IMP or CAL). This would change the graphical
appearance of the network when cross-compiled to Ladder Diagram.

Looking at the procedural (IL) sequence and the simultaneous evaluation in
Example the IL sequence converted to Ladder is mideading. When Varl :=
Var3 := TRUE, Labell and Label2 are TRUE. The IL sequence jumps to Labell;
in the Ladder Diagram version both labels are addressed in accordance with the
evaluation rules of Ladder, and the next network to be activated is unclear.

This problem of cross-compilation is solved in many of the programming systems
that possess this functionality by:

- not alowing further logic operations after an assignment in graphical
languages,

- evaluating the code part of a graphical network from top to bottom (Example
E|38) and stopping evaluation when a control flow instruction is being
executed.

Differencesin languages affect cross-compilation.

Not al of the languages can be cross-compiled to each other. SFC is a language
for structuring applications, making use of the other languages, but having a
completely different design. We shall therefore only discuss cross-compilation
between IL, ST, LD and FBD.

7.4 Language Compatibility 251

Restrictionsin LD/ FBD.

Jumps can be made using labels, but are somewhat contradictory to the concept of
“paralel” networks. Some functions, like management of system resources (stack
operations), can only be expressed in very complicated, unreadable programs.

Constructs like CASE, FOR, WHILE, or REPEAT are not available in these
languages and can only be implemented by using standard functions like EQ and
complex network arrangements.

Unlike ST, these two languages alow only simple expressions to be used to index
arrays.

LD is designed to process Boolean signals (TRUE and FALSE). Other data types,
like integer, can be processed with functions and function blocks, but at least one
input and one output must be of type BOOL and be connected to the power rail.
This can make programs hard to read. For non-Boolean value processing FBD is
better suited than LD.

Not all textual elements have a matching representation in the graphical languages.
For example, some of the negation modifiers of IL are missing in LD and FBD:
JMP, IMPC, RET and RETC are available, but IMPCN and RETCN are not.
These can be formulated by the user with additional logic operations or supple-
mentary (non-standard) graphical symbols can be included in the programming
system.

Restrictionsin IL/ ST.
The notion of a network, as used in the graphical languages LD and FBD, is not
knowninIL or ST.

In Ladder Diagram, attributes like buffering of variables (M, SM, RM) or edge
detection (P, N) can be expressed by graphical symbols. This representation of
attributes in the code part of a program does not comply with the strict concept of
expressing the attributes of variables in the declaration part. There are no matching
elementsin the textual languages for these graphical symbols.

The use of EN and ENO poses another problem, as no matching element is
available in IL or ST. Each user-defined function must evaluate EN and assign
ENO a value to be useable in graphical languages. If EN and ENO are used in
graphical languages and not used in textual languages, two versions of standard
functions are needed (with and without EN/ENO processing), see Section E|5.2.

Cross-compilation IL / ST.
A high-level language (ST) can be converted more easily and efficiently into a
low-level, assembler-like language (IL) than vice versa. In fact, both languages

252 7 Innovative PLC Programming Systems

have some features that make cross-compilation into the other difficult. For
example:

- ST does not support jumps, which have to be used in IL to implement loops.
This makes cross-compilation of some L programs difficult.

- IL supports only simple variables for array indices and actual parameters for
function and function block calls, whereas in ST complex expressions may also
be used.

Full cross-compilation only with additional information.

If a system in Ladder Diagram allows multiple coils and/ or conditional instruc-
tions with different values (corresponding to a one-output to many-input situation
in FBD), see Example, auxiliary variables have to be used to cross-compile to
IL. When cross-compiling this code part from IL or ST to ladder diagram, care has
to be taken to avoid multiple networks being generated in the Ladder Diagram
version.

Small modifications of an IL program can, therefore, result in major changes in the
Ladder cross-compiled form.

LD Varl 0001:

ST Helperl Varl Var2 Var3
AND Var2 ' I—()
ST Var3 ! "

LD Helperl Vﬁm \//a{S
AND Var4 11 \ /
ST Varb5 Helperl

a) IL b) LD

Example[@4[Jf coils or conditional instructions are used in an LD network with different
value assignments, direct cross-compilation is not possible. To cross-compile to IL, an
auxiliary variable like Helperl is necessary.

7.4 Language Compatibility 253

LD Varl 0001:
OR(Vvar3 Varl Var2 Var7
ST Helper * typically not allowed * | 1l (
p (* typically) _|I I ()_

AND Var4

) Var3 Vard
AND Var2
OR (Helper
AND Vars Vﬁf5

) I
ST Var7
aIL b) LD

Example IZIS.[k)ross-compilation is not possible for graphical Ladder constructs which,
when cross-compiled to IL, would result in improper nesting of expressions.

The Ladder network in Example which looks perfectly clear in this graphical
language, is not directly cross-compilable to IL. An auxiliary variable, like Helper,
is necessary to temporarily store the intermediate result between var3 and Var4,
and several parentheses are needed.

Some programming systems automatically place graphical elements in the correct
(optimum) position, depending on their logical relation. Other systems allow and
require users to position the elements themselves. This topographical information
needs to be stored in the form of comments in IL or ST, if a graphical represen-
tation is to be regenerated from the textual representation later. IL or ST program-
mers cannot reasonably be expected to insert this topographical information. In
most programming systems, the information about the position of the graphical
elements is therefore only kept in internal data storage and is lost when the
program is cross-compiled to IL or ST. In most cases, there is ho way back from
the textual languages to the original graphical layout.

Quality criteriafor cross-compilation.

It has been explained that full cross-compilation in the theoretical sense cannot be
achieved. The quality of a programming system with respect to cross-compilation
depends rather on how well it meets the following conditions:

254 7 Innovative PLC Programming Systems

1) The rules of cross-compilation should be so easy to understand that the
programmer can always determine the result.

2) Cross-compilation must not change the semantics of the POU (only local
modifications, entities must stay together).

3) Cross-compilation should not affect the run time of the program.

4) Cross-compilation must not introduce side-effects (i.e. not affect other parts of
the program).

5) Ambiguities must be resolved (see Example [7.3).

As cross-compilation is not easy to achieve, many programming systems do not
implement it.

[f]4.2 Language independence]

The POU, as an independent entity, is an important item of IEC 61131-3. To
invoke a POU in a program, only the external interface of the POU needs to be
known, but no knowledge about the code contained within it is required. To design
a project top-down, it should therefore be possible to define all the interfaces of
the POUs first and fill in the code later.

Once the externa interface of a POU has been defined, it is typicaly made
available to the whole project by the programming system. It consists of

- the function name and function type, plus the name and data type of al
VAR _INPUT parametersfor aFUNCTION,

- the function block name, the name and data type of all VAR _INPUT,
VAR _OUTPUT, VAR _IN_OUT parameters and EXTERNAL references for a
FUNCTION BLOCK,

- the program name, the name and data type of al VAR _INPUT,
VAR _OUTPUT, VAR IN_OUT parameters and GLOBAL variables for a
program.

One POU can invoke another function or function block instance without knowing
which language the other POU has been programmed in. This means that the
programming system does not have to provide a separate set of standard functions
and function blocks for each programming language.

This principle can even be extended to languages outside the scope of
IEC 61131-3 as the caller needs no knowledge of the block apart from its external
interface. If the external interface and the calling conventions of an IEC 61131-3
programming system and a C compiler, for example, are compatible, it is equally
possible to invoke a C subprogram.

IEC 61131-3 expresdy allows the use of other programming languages.

7.5 Documentation 255

7|5 Documentation|

Different types of documentation are required to allow for efficient maintenance of
applications and to support modern quality standards like 1SO 9000:

1) Cross-Reference List. A table listing which symbols (variable name, jump
label, network title, POU type or instance name etc.) are being used in which
POUSs.

2) Program Structure, giving an overview over the calling hierarchy of POUs.
Each POU has a list giving the names of al POUs invoked from it. The
Program Structure can be visualised graphically, or textually, with a nesting
depth depending on the system.

3) Allocation List (Wiring List). A table giving the physical addresses of 1/0Os and
the names of the variables assigned to these addresses.

4) 1/0 Map. A table of al I/O addresses used by the application, sorted by
address. The I/O map is helpful in finding free I/O addresses when extending
an application and for having the relation between PLC software and PLC
hardware documented in a hardware-oriented manner.

5) Plant Documentation. A description of the entire plant, typically graphical.
The entire plant contains multiple PLCs, machines, output devices etc. Each

individual PLC will be only one “black box” in this documentation. The plant
documentation is often generated with standard CAD programs, giving the
topological grouping and connections between PLCs and other devices.

6) Program Documentation. Sources of POUs created with the programming
system. When printed, these should closely match in structure and contents the
representation on-screen while editing.

7) Configuration. The Configuration — as understood by IEC 61131-3 — describes

which programs are to be executed on which PLC resources and with what run-
time properties.

These types of documentation are neither required nor standardised by
IEC 61131-3, but have become popular over the years for documenting PLC
programs.

f]5.1 Crossreferencelist |

The cross-reference list consists of

- al symbolic names used in a program (or occasionally in an entire project),

- the data type of all variables, which may be a function block type if a variable
is a function block instance, plus declaration attributes (like RETAIN,
CONSTANT or READ_ONLY) and the variable type (VAR_INPUT, ...),

- the name and type of the POU, and the line number, for each usage of a
variable,

256 7 Innovative PLC Programming Systems

- thekind of accessto thisvariable at this program location,
- thelocation of the declaration of this variable.

Some systems support a cross-reference list only for individual POUS, or provide it
only for global and external data.

The cross-reference list is helpful in finding program locations referencing
variables during debugging.

Different sorting criteria are usually supported. The entries are usually sorted
alphabetically by symbolic name. They can also be sorted by symbol type (input,
output, function name, instance name,...) or datatype (BYTE, INT,...).

Symbolic POU name POU | Line Access | Data Attribute [Var type

name type | No. type

Temp_Sensor | SOND.POE Prog 10 [Decl INT Retain GLOBAL
SOND.POE [Prog 62 | Read GLOBAL
CONTR.POE [FB 58 | Write EXTERN.

Example IZ|6[|ExampIe of across-reference list sorted by symbolic name

[7]5.2 Allocation list (wiring list) |

The allocation list lists all variables which are assigned to physical 1/0 addresses
of a configuration, plus the access path, if supported.

Sometimes, tools are provided for changing the assignment of symbols to
physical addresses (rewiring). This often needs to be done when porting an appli-
cation to another environment (e.g. another PLC with different I/O connections).

Symbolic hame 1/0 address

Temp_Sensor_1 %I1B0

Temp_Sensor_2 %I1B2

Temp_Control %QB4

Temp_Save %MB1

Example EI?[IExample of an allocation list (wiring list)

IZ|5.3 Comments

7.6 Project Manager 257

Comments are an important part of program documentation. Application sources
can be enhanced by descriptive comments at many locations (see Example:

- In ST, comments can be inserted wherever space characters are allowed,

- InIL, comments can be added at the end of every line,

- |EC 61131-3 does not include any guidelines on comments in the graphical
languages. However, network comments, preceding and describing a network,
are avauable aid in documentation.

Some programming systems have menu settings to prevent (accidental)
overwriting of the program and only allow changes to be made in the comments.

[7]6 Project Manager

The task of the Project Manager is to consistently manage all information related
to the implementation of a project. Thisincludes:

- Sourceinformation

- Thesources of al POUs created, with

- type definitions, declarations of global data, definition of access paths
with VAR_ACCESS,...

- descriptions of the call interfaces of all POUs in order to check their
usage,

- Version control of all sources,

- Access restrictions, sometimes with different access levels authenticated by
passwords, for:

- modifying POUs,
- printing programs,
- editing libraries.

- Object information

- Compiled sources (intermediate code, object code, executable files),

- Project creation procedures (call-dependence, creation and modification
information for controlling time-dependent compiling operations, for
examplein MAKE or batch processes),

- Libraries (standard functions, standard function blocks, manufacturer
defined blocks, communication function blocks, user libraries).

258 7 Innovative PLC Programming Systems

- Online information
- Datafor assigning parameters to the project (recipes),
- Device and configuration information (PLC hardware, 1/0 modules,...),
- Additional information for online testing (symbol information,
breakpoints,...),
- Communication information (protocols, interfaces).
- Documentation (e.g. cross-reference list, alocation list, program structure,...).

The Project Manager administers and archives al this data. Why is a standard file
manager (e.g. the Windows Explorer) not sufficient?

POUs are interdependent. Multiple programs within one project can use the
same POU, although it only exists as a single file. Function names and function
block types have global scope throughout a project (whereas the scope of function
block instances is limited to the POU they are defined in, unless they are explicitly
declared GLOBAL).

For every invocation of a POU (instance or function) the compiler and editors
need interface information about the POU being invoked (types and names of
parameters). In order to reduce the overhead of gathering the same information
again and again every time it is needed, the Project Manager can store such
information and supply it to other parts of the programming system when
requested.

Figure shows the directory of a hard disk drive (D:), containing sub-
directories. In order to visualise the structure of a project, it is necessary to
evaluate interdependences between calls and environmental factors to enable the
relations to be displayed, see Figure

The programming system should assist the programmer in understanding the
structure of the project. One project can contain several configurations (PLCs),
and each configuration can contain severa resources (CPUs). See Chapter 6 for
the description of a configuration. Each resource will have a specification of the
hardware associated with it (Resourcel File). Each resource can execute multiple
programs (Programl, ...), which are implemented in the form of POUs invoking
other POUs. Two distinct instances of one POU, as shown in Figure[7.3, contained
in different programs, can be described by the same POU stored in only one file on
disk.

7.6 Project Manager 259

D:\ Dirl Manufact
anufact. .
POUsS O : Directory

Standard-
FBs and
FUNs

Dir3) Binary
Project A)
Files

Configurat.

Files

)06

POU Dirll

&>

Figure [7]2[JData for sources and libraries stored on disk (shown as drive D:\). The
programming system should allow the user to create directories and sub-directories to
resemble the project structure as far as supported by the operating system (e.g. Windows).

POU Dirl

0

Rules can be established for finding information. For example, to compile
Programl for Resourcel, al user, system and manufacturer POUs used in the
program have to be collected. If one of the POU names called appears more than
once on the disk, the system has to take appropriate action (e.g. apply a rule to
choose one, or issue an error message); IEC 61131-3 does not discuss this
problem.

For efficiency reasons, it is desirable to recompile only a minimum set of
sources to create a new version of a resource, configuration or program after a
change. For example, if, only Program1 has been modified, other programs, or
even other resources, that do not need the modified POU need not be re-compiled.

260 7 Innovative PLC Programming Systems

Configuration and Program Level

/ é \A POU Instances
Configuration 1 Resource 1 Program 1 Cﬁ@@
Config.1 Resourcel
File File

Program 2 < >

Resource 2

Resource2
File

il

Configuration 2

Config.2
File

—
S,

Figure Iﬂs.ﬂThe logical structure of a project consists of configurations, resources and a
POU calling hierarchy. As this structure in most casesis not identical with the physicd file
and directory structure, e.g. Figure additional visualisation aids are helpful.

A Project Manager should therefore support

- registration of newly created files (sources, error logs, interface descriptions),

- import of files from different projects,

- display of all existing POUs,

- renaming and deletion of POUs,

- an information structure which makes the structure of the project (calling
hierarchy, dependencies) understandable to the user,

- maintenance of all information (POUs, interfaces, calling hierarchy, binary
files, etc.) that the rest of the programming system needs for creating a project.

Some |EC 61131-3 programming systems store data in individual files (e.g. one
file per POU) on the hard disk, while others use a database. Either way, project
files should only be edited via the Project Manager. To increase efficiency when
supplying data in response to requests (e.g. from the linker), some information can
be pre-processed, so that it is not necessary to scan the entire file system for each
request.

7.7 Test & Commissioning Functions 261

[7]7 Test & Commissioning Functions

The first stage of program development is typically performed on a PC, without a
PLC. When the most important parts of the program have been completed, work is
continued with the PLC in the target environment. The following are typical tasks
performed at this commissioning stage:

- Download of the entire project or individual POUs (after modifications) to the
PLC,

- Upload of the project from the PLC to the PC,

- Maodification of the program in the PLC (either in “RUN”" or “STOP’ mode),

- Starting and stopping the PLC,

- Display of variable values (status),

- Direct setting of 1/0Os or variables (forcing),

- Deactivation of the physica outputs of the PLC, to prevent unsafe plant
conditions during tests. Programs are executed and values are assigned to
direct variables just as they would be in normal operation. Additional software
or hardware ensure that physical outputs are not influenced by values written to
the output variables.

- Retrieving PLC system data, communication and network information from the
PLC,

- Program execution control (breakpoint, single step,...).

These functions are implemented in different ways and to different degrees by
individual programming systems. |EC 61131-3 does not stipulate any requirements
with respect to these features (yet).

[7]7.1 Program transfer|

After a POU has been created with the editor and been checked for syntax, PLC-
specific code is created. This can take the form of machine code for direct
execution by the PLC's processor, or it could consist of instructions to be
interpreted by the PLC. The programming system puts this object code together
with the object code of other POUs to make a program (link procedure).

All that remainsto be doneis:

- Connect the executable code with a defined CONFIGURATION (task
association),

- Map the logical hardware addresses to the actual physical addresses of the
PLC,

- Assign parameters to the PLC’ s operating system.

These tasks can be performed by atool called a System Configurator, or in some
implementations the PLC’ s operating system can do some of the work.

262 7 Innovative PLC Programming Systems

The entire project now needs to be transferred to the PLC. A tool known as the
Communication Manager establishes a physical and logical connection to the PLC
(e.g. a proprietary protocol on port COM1, or a fieldbus protocol). This tool
performs some checks, which are partly invisible to the user. For example:

- Has contact been successfully established with the PLC?

- Doesthe PLC's current state allow transfer of new programs? Or can the PLC
be put into the correct state?

- Isthe PLC's hardware configuration compatible with the requirements of the
program?

- Isthe current user authorised to access this PLC?

- Visuaisation of the current state of communication.

The program is then downloaded to the PLC, together with all the information
needed to run it. The PLC program may now be started (cold restart).

IZ|7.2 Online modification of a programl

If it is necessary to modify blocks whilst the program is running (PLC in “RUN”"
mode), this can be done in various ways:

- By changing the POU on the PC and compiling the whole program again with
the programming system. Everything is then downloaded to the PLC. If thisis
to be done in “RUN" mode, a second memory area must be available and
activated after the download is completed, as the download generally takes too
long to suspend execution of the cyclic PLC program.

- By modifying the POU on the PC and downloading only the modified POU to
the PLC. This requires a block management function to be available on the
PLC, which will accept the new block and replace the old block with the new
one after the download has been completed. As the old and new blocks usually
differ in size, a “garbage collection” is required from time to time in order to
be able to re-use memory space which would otherwise be wasted.

- By replacing only individual networks (SFC, LD, or FBD). This is only
possible if other parts of the POU are not affected. E.g., jump labels in other
networks must not move if the PLC operating system does not include jump
label management.

[7]7.3 Remote control: Starting and stopping the PLC|
The PLC hardware typically features a switch to start and stop the PLC. This can

be remote-controlled from the programming system.
IEC 61131-3 defines different start modes for aPLC (see Section E.S.B):

1)

2)

3)

7.7 Test & Commissioning Functions 263

Cold Restart. The PLC starts the program without memorising any variable
values. This is the case, for example, after downloading the program to the
PLC.

Warm Restart. Following a power outage, program execution is resumed at the
point where it was interrupted (e.g. in the middle of an FB). All variables
carrying the “RETAIN” attribute retain the value they had before the
interruption, all other variables are reset to their initial value.

Warm restart at beginning of program. The values of all RETAIN variables
are also retained and all other variables are re-initialised, but the program is
restarted at the beginning. This takes place automatically if the interruption
time exceeds a parameterised time limit.

Additional commissioning features are:

Stopping of the PLC, either with the current output values or with “safe” output
values,

Deletion of memory areas to prevent uncontrolled restarts,

Selection of special operating system modes, e.g. test mode, maximum cycle
time, etc.

IZ|7.4 Variable and program statusl

The most important test function for debugging and commissioning a PLC
program is the monitoring of the status of variables (“flags’) and external 1/Os.
Ideally, values should be displayed in a user-selectable form, as shown in Example

264 7 Innovative PLC Programming Systems

Variable Type Value

Coil BOOL 1
Varl BOOL 1
Var2 BOOL O
Var3 BOOL 1
a) Variable List
LD Varl 1 Coil := Varl OR Var2 AND Var3
OR Var2 0 1 1 0 1
AND Var3 1
ST Coil 1
b) IL (Variable Status) c) ST (Variable Status)
0002: 0002:
(* comment *) (* comment *)
1 1 1 >=1
_| |—(— 1
0 &
0
I 1 1

d) LD (Variable Status)

e) FBD (Variable Status)

LD Varl 1
OR Var2 1
AND Var3 1
ST Coil 1

f) IL (Current Result)

Coil := Varl OR Var2 AND Var3
1
1

1

g) ST (Expression)

ExampIeIZ|8[btatus view of the sample program from Example@ during commissioning,
shown in the different programming languages. The different display modes can be

combined. (Example continued on next page).

7.7 Test & Commissioning Functions 265

0002: 0002:
(* comment *) (*comment *)

Varl Var3 Coil

Var2

h) LD (Power Flow Display) i) FBD (Program Status)

Example 7.8. (Continued)

Depending on the implementation in the PLC and/ or the programming system,
there are different methods of viewing the current data and execution flow:

1) Variable List: Display of alist of variables (a). The variables contained in the
list are scanned in the PLC and their values continuously updated on the
screen. This method is frequently used for monitoring values from different
parts of the program. Structured variables can also be displayed showing the
values of their individual members.

2) Variable Satus: All variables of a specific code portion are displayed. In
Example @ the values of Varl, var2, Var3 and Coil are displayed in a
separate window (@) or directly within a graphic (b-e).

3) Program Satus (also Power Flow). Instead of displaying the values of
individual variables, the result of each operation is displayed (the Current
Result, see Section B.l.Z) (f-i). In the graphical languages, this is done by
drawing thick or thin lines to represent TRUE and FALSE for Boolean
expressions or displaying numerical values beside each line.

The quality of values provided will depend on the functionality, the speed and the
synchronisation between the programming system and the PLC. Depending on the
operating system and the hardware features available, the values on the PLC can
be “collected” at different times:

- Synchronoudly,
- Asynchronoudly,
- Onchange.

Synchronous Satus: Values are collected at the end of a program cycle. The
values are al generated at the same point in the execution of the program, and are
therefore consistent. This is also the time when variables mapped to 1/0 addresses
are written to the outputs (update of the process image). A cyclic program will in
most cases execute much faster than values can be retrieved by the programming

266 7 Innovative PLC Programming Systems

system, so the values viewed with the programming system are only updated every
n cycles.

Asynchronous Satus. The programming system constantly requests a new set of
values for the specified variables (asynchronously to the cycle of the PLC
program). The values are collected at the moment when the request is received.
Each value is a snapshot of the respective memory location.

Satus on change: Vaues are only be collected when they change (e.g. a signal
edge). This requires specia hardware (address monitoring) within the PLC.

Advanced systems supply additional analysis tools. These allow the behaviour of
variable values to be visualised over time (logic analysis) as shown in Figure

60 +

RealVar_x

RealVar_y

50 A

40 A
30 A

20 A

10

0

FrTT T TTTTTTTTTT/ msek T T T T T T m Sek

Figure fJ4.[FExample of data analysis of two REAL variables and one BOOL variable

A facility that is not often implemented as yet is the visualisation of the data flow
between individual POUs, as shown in Figure[7.5]

7.7 Test & Commissioning Functions 267

fbl
progl > Typel 5 2040 Mfun1 |
30 [
50 —
L—|> fun2 |—
100 [
fb2
— Type2 undefined g
11 funl
<} undefined [

Figure fl6.[bisplay of the calling hierarchy of the POUs together with the actual
parameters during execution of the PLC program.

When requesting variables to be displayed, it is not sufficient to specify the name
of the POU in which they occur. In the example shown in Figure the name
“fun1” would not be sufficient to identify which variables to display, as this POU
is called twice (Typel and Type2) and will return different values depending on the
call parameters. For unambiguous identification it is therefore necessary to specify
the call path and, in the case of functions, even the call location.

Additional difficulties arise from the fact that the local variables of functions only
exist during execution of the function, and are otherwise undefined.

f]7.5 Forcind

To test the behaviour of programs and plant it is helpful to be able to force
variables to specific values.

To simulate a specific plant condition for the program in order to test certain
program parts, some variables are set to fixed values using the programming
system, and the PLC is made to use these values instead of the actual values.

268 7 Innovative PLC Programming Systems

Local Variables
Variable Data Type POU Instance Assigned Value

Var_Loc BOOL FB1 1
Var3 INT FB1 20
Directly represented variables (WORD)
%wo:0010001000001010 (BitsOto15)
%wW1: 0 00 0000011000000 (Bitsi6to31)
Symbolic Variables (Integer)
Start Address Variable Name Assigned Value

%QW20: Limitvalue 11.233

ExamplelﬂQDExample of the forcing of variables and I/O addresses (Boolean and integer
values). When specifying the name of the “POU instance”, it may be necessary to specify
the calling hierarchy, or even the program location in the case of functions, see Section

Aslong asthe PLC iskept in “forcing” mode by the programming system and with
the parameters set as shown in Example, the program will always find the
value Boolean 1 when reading %IX0.2 or %IX0.6.

Depending on the implementation in the PLC, the variables being forced are
either set to the forced value only once at the beginning of every cycle and the
program itself can overwrite them during the cycle, or they are kept to the forced
value throughout the cycle (overwriting is prevented).

[7]7.6 Program test

Breakpoints and Single Step, functions well known from PC development
environments, can also be used for debugging PLC programs:

- Breakpoint Set/ Reset. The user specifies a location in the program where
execution is to be interrupted and further instructions from the user awaited.
Advanced systems support conditional breakpoints, e.g. “Break at line 20 of
block FB4 if Function_1 has been called, Variable X has been set and
Function_2 has been reached.”. As mentioned before, specifying the line
number and POU or instance name is not always sufficient, but the location in
the calling hierarchy should be specified, see Fi gure@

- Sngle Sep. After stopping at a breakpoint, the user can execute the following
instructions or graphical elements one at atime.

7.8 Data Blocks and Recipes 269

[7]7.7 Testing Sequential Function Chart programs|

Specia features are required to test programs written in SFC. Depending on the
system, the following features are available:

- Setting/ Resetting transitions, to force or prevent a transition to the next step.

- Activation of steps or transitions, to begin execution of a POU at a specific
location.

- Permanent blocking of steps or transitions, to prevent them from being
activated.

- Reading and modifying system data that is relevant to SFC, e.g. step flags, step
timers, etc.

Thisisthe equivalent of forcing at SFC level.

18 Data Blocks and Reciped

A recipe, in PLC parlance, is a set of variable values, which can be replaced by a
different one, to make the same PLC program behave differently. For example, in
an automated process, only parameters like length, weight, or temperature need to
be changed to produce a different product. Using recipes, such process data can be
modified during operation.

The replacement of one set of data by another can be performed by the program
itself. In this case, all the possible data sets have to be stored in PLC memory.
Another possibility isto download a new data set to the PLC at a convenient point
during operation, replacing an existing data set.

Some PLC systems use Data Blocks (DB) for this purpose. A data block is
accessible throughout the project (global) and consists of data items of specific
data types.

The data block number gives the program the base address of the data block that
is currently active. The data items are accessed by an index (data word number).
To switch to a different data block, only the base address of the new block has to
be selected in order to activateit.

270 7 Innovative PLC Programming Systems

Program: .
am ~ Data_Block_1:
IF InputSwitch = 1 /’D 100 (* Length of item *)
Load DB-Address_1 0,445 (* Material constant *)
ELSE
Load DB-Address_2
. \ Data_Block_2:
: D
200 (* Length of item *)
Load Dataword_1 (* of active 0,545 (*Material constant *)
: data block *)
\ J

Figure E]G.[bsi ng data blocks. Exactly one data block can be active at any onetime.

In Figure, the instruction “Load Dataword_1“ will load 100 or 200, depending
on which data block is active.

One of the main uses of data blocks hitherto has been as data areas for function
blocks: before calling the FB, the relevant data block (recipe) is selected and is
then used by the FB for fetching parameters and holding temporary or internal
values.

Common features of data blocks can be summarised as follows:

DBs can be downloaded and replaced separately like any other block,
DBs are globally accessible by any other block,

- Exactly one DB is active at any one time,

DBs contain data type information about their data items.

Asthe subject of data blocks has not been raised until this late stage of our book, it
isonly natural at this point to ask: “Where are the DBsin this new standard?’

IEC 61131-3 does not discuss data blocks. Instead of activating one globa data
block to hold parameters and local information for a function block, instantiation
of function blocks is used (see Chapter 2). Each instance of a FB is automatically
assigned its own “local” data record. FBs can also access global data. IEC 61131-3
therefore fully covers the functionality of data blocks as a means of assigning
parameters to function blocks and storing local data.

However, unlike POUSs, the instance data areas of FBs cannot be replaced or
initialised separately. The standardisation committee is aware of this deficiency
and will cover it in Technical Report 2.

7.8 Data Blocks and Recipes 271

Ways of implementing most of the features of DBs using the methods of
|EC 61131-3 are outlined here.

Data that belongs together is declared as a structure or an array. Like data blocks,
these consist of a number of values, each having a data type. Such compound
variables can be used as input or output parameters, local or global data. Data
structures like this can also conveniently be used to implement recipes.

Switching between different sets of data can be done in several ways:

1) The PLC is stopped and a complete new program with different data is
downloaded to the PLC. This method requires the PC to be permanently
connected to the PLC and the process under control must be able to tolerate
such interruptions.

2) Individual blocks (POUs) are replaced. The POUs downloaded from the PC
replace POUs with identical namesin the PLC, but have different initial values
for the variables contained or call different POUs. The PLC's operating system
must have a block management facility that allows replacement of individual
blocks during operation.

3) Remote SCADA software is used to dynamically modify the (global) set of
data

4) All the sets of data required are contained within the PLC. The program
invokes POUs with different sets of data or assigns its function blocks different
parameter sets depending on the situation.

Replacing POUs seems appropriate for POUs which mainly:
- provide global data,
- copy or initialise data.

Global and external variables are a common way of supplying parameters to parts
of aprogram, e.g. function blocks:

The disadvantage of using GLOBAL declarations is that all the data sets have to
be stored in the PLC all the time. Systems that support the configuration of global
variables can avoid this problem by allowing a resource to be supplied with values
for its global data by another resource or via access paths.

272

Type Definition:

Main Program

7 Innovative PLC Programming Systems

Using POU:

TYPE
rec_struct:
STRUCT
parl:int;
par2:int;

END_STRUCT;
END_TYPE

Example Ello.[]'l'he main program contains different sets of data (recl, rec2). The globa
structure recipe is assigned one of these depending on a specified condition. Other POUs
simply access the global variable with a corresponding EXTERNAL declaration.

Global datais inherently error-prone when programs have to be modified, as side
effects could occur in al locations where the data is accessed. The IEC 1131-3
principle of object-oriented data is also violated by using global variables. To
prevent this, call parameters could be used instead of the global variables in

Example

Main Program

PROGRAM main

VAR
recl: rec_struct:=...;
rec2: rec_struct:=...;
Work1: Work;
END_VAR
IF Condition THEN
Work1 (recl);
ELSE

END_IF;

Workl (rec2);

Example 11|:|To avoid the side effects that are possible when using the method in
Example|7.10, data sets recl and rec2 are passed as input/ output parameters (this only

PROGRAM main
VAR_GLOBAL

END_VAR

VAR
recl: rec_struct :
rec2: rec_struct :
Work1: Work;

END_VAR

IF Condition THEN
recipe :=recl;
ELSE
Recipe :=rec2;
END_IF;

Wo rkl 0;

recipe:rec_struct;

FUNCTION_BLOCK Work
VAR EXTERNAL
Recipe: rec_struct;
END_VAR

LD recipe.parl

Using POU:

FUNCTION_BLOCK Work
VAR_IN_OUT
recipe: rec_struct;
END_VAR

LD recipe.parl

passes a pointer and avoids copying huge data structures).

7.9 FB Interconnection 273

719 FB I nter connection |

[7]9.1 Data exchange and co-ordination of blocksin distributed systems]|

IEC 61131-3 defines PROGRAM hlocks, which hierarchically call function blocks
and functions, passing them parameters. Each PROGRAM (or certain function
block instances) is assigned tasks. Communication between the tasks takes place
using global variables or ACCESS variables.

PROGRAM ABC

Data link to other P o VAR_GLOBAL
PROGRAM - > END_VAR
Cal FB_inst
Y N\
\\
\ 4
\ FB x
\
\
_ Procedural call to a block, passing data \
values by means of input/output variables R

Fun'Y

Varl Varz Var3 Y
—i II:I—(
<4—) Sending" data v ’—‘
I

Figure E?.[bne program calling other blocks and passing them information through
parameters. With other programs, only datais exchanged.

Distributed PLC systems, as used in industrial plants, power supply systems or
building automation, require:

- pardlel, autonomous execution of individual algorithms,
- geographically separate computing nodes,
- asynchronous data exchange.

Today, distributed applications are typically implemented as follows. Pre-
fabricated blocks are copied from a library to create a new project. Missing
functionality is implemented in new, specialy written blocks. One PROGRAM,
together with the function blocks and functions called, constitutes an executable
unit. Several programs are written.

274 7 Innovative PLC Programming Systems

Each PROGRAM is now assigned a node in the network, and the inputs and
outputs of al programs are interconnected. Unconnected inputs of program
instances are assigned individual parameter values where necessary. This is shown
in Figure[7.§]

Libraries are usually implemented by experts from the hardware manufacturer or
are part of the firmware (EPROM) of the PLC or network node.

Thisis an extreme case of the IEC 61131-3 programming model. The application
is “configured” from pre-fabricated blocks. The programs run mostly autono-
mously without being “called” by other blocks. Functions and function blocks in
the sense of IEC 61131-3 are provided locally to be called by the PROGRAM. A
direct call to a block in another node or CPU is not possible (a PROGRAM may
not invoke a PROGRAM).

node_nr:
task_nr:
priority:
cycle time:

FUNCTION_BLOCK 1
PROGRAM ABC PROGRAM DEF
|_ABC_1 |O_ABC_1

O_ABC_2

111

| DEF_1 O_DEF_1

) 4

| DEF 2 O_DEF.2

input_value:
range:
net_variable:

PROGRAM GHI

all GHL1 O_GHI1
Ll

Figure f]B.[Assignment of blocks to network nodes and PLC tasks. All PROGRAMS run
independently and are connected only via ACCESS variables.

It is possible to deviate from the definition in 1EC 61131-3, which stipulates that
only programs may be connected to objects in different tasks. Function blocks can
then be distributed amongst computing nodes (tasks) and interconnected at will.
This allows a much closer mapping of agorithms to network nodes. The per-

7.9 FB Interconnection 275

formance of a distributed automation system can be increased without changing
the program by simply adding computing nodes and re-configuring appropriately.
Thisinvolves two problems, as shown in Fi gure:

1) The run-time behaviour of all blocks must be properly co-ordinated because
control information sent together with other data information is confusing.

2) A mechanism is needed to ensure consistent flow of data between blocks
(network nodes) by checking the validity of dataitems or groups of dataitems.

As long as al blocks interconnected are executed on the same network node,
execution control can be implemented implicitly (execution control for blocks is
defined in IEC 61131-3) or explicitly configured (execution number for every
block). Additional control is needed if the tasks involved have no common time
base, e.g. if they are executed on different nodes in the network.

This topic is currently being investigated by a working group of the IEC, see
Chapter 9 and VDI [VDI 3696/1-93] [VDI 3696/3-93].

These interconnection techniques result in even greater separation between
programming and configuration. The programmer writes programs using FBs and
functions and interconnects these. Afterwards, the function blocks are assigned to
computing nodes. One and the same application can execute locally in one task, or
be distributed between many tasks, without having to modify the program
structure.

[7]9.2 M acro techniquesin FB inter connection|

A project with interconnections as described in Section consists of a large
number of blocks. To make the structure easier to understand, groups of blocks
can be visually combined and shown as one block. Related functionality can be
grouped onto separate working sheets, called Function Charts. This “macro”
technique is explained below. Example gives an example from the plant
industry.

Temp_Check:

Get_Current_Value

S1

CheckConsistency Write_Value Value
\ Temperature
s2 Get_Current_Value Adjust
» N Write_Value Prot

S3 Get_Current_Value L /
— — Calibration

Example IZ|12.|] nterconnection of simple basic elementsin plant engineering

276 7 Innovative PLC Programming Systems

Placing and connection of blocks (Get_Current_Value, CheckConsistency, ...) is
performed graphically by the user. All blocks have a clearly defined functionality.
Data declarations are made implicitly by block instantiation. Only when
connecting inputs and outputs does the user (or programming system) have to
check for compatibility of data types.

Blocks provided by the manufacturer can be used to build more sophisticated
blocks using a kind of macro technique. This corresponds to building complex
data structures out of elementary data types. For this reason these blocks are
sometimes called Derived Function Blocks.

Temp_Control:

Temp_Check Slide_Cntrl
— 51 Value Oxygen
Fuel
— 53 Prot
= Calibration
Log_Printer

ExampIeEI13l]T he blocks from Exampl (called Temp_Check) attain a higher degree
of specialisation and sophistication when grouped together using macro techniques.

After definition as shown in Example[7.13, block Temp_Control can be used in
applications.

If the blocks used are elementary blocks defined by the manufacturer (well-known
behaviour), good simulation results can be achieved (e.g. run-time, effects of diffe-
rent hardware assignments or modifications in communication infrastructure).

fl10 Diagnostics, Error Detection and Error Handlind

Diagnostics is basically the “detection of error conditions during operation, and
localisation of the source of error”. There are four areas where errors can occur:

1) PLC hardware, including connections to other devices,

2) PLC software (operating system),

3) User software,

4) Process behaviour: the process under control may enter an unforeseen state.

A generd distinction is made between system errors and programming errors.

7.10 Diagnostics, Error Detection and Error Handling 277

Vendors offer various tools for diagnostics. These can be either additional
hardware that checks for error conditions and provides information about them, or
software functions to be included in the application. SFC is a good language for
detecting errors in a running installation (e.g. “Transition XY not firing”) or for
continuing with a defined response after detecting an error.

Error concept of IEC 61131-3.

IEC 61131-3 has only a very genera approach to error handling, giving the user a
certain amount of support in handling cases 2) and 3) above. The standard requires
an error list to be provided by PLC manufacturers, indicating the system response
to avariety of specified error conditions (see Appendix E):

1) The error is not reported. There must be a statement to this effect in the user
documentation.

2) The possibility that the error might occur is detected when preparing (editing,
compiling or loading) the program, and the user is warned accordingly.

3) The error is reported during execution of the program (at run time).
Manufacturer-dependent procedures for handling the error are provided.

Quiality assurance plays an important role in the automation business. The quality
of today’s compilers effectively prevents some typical program errors from
dlipping through at the compilation stage. Concepts of IEC 61131-3, like strict
data type checking, even prevent some errors from occurring in the first place,
during programming. However, some errors can only be detected at run time.

Some error situations, like division by zero (see Appendix E) should be checked
by the PLC system. IEC 61131-3 [IEC TR3-94] recommends the definition of a
uniform globa (manufacturer-dependent) data structure for errors, which should
contain the status of an operation (Error Yes/ No), the type of error (Division by
zero) and the location of the error (POU name). This information could then be
scanned by the application, or connected to the SINGLE input of a task (see
Section E.3.4). Thistask would be connected to a system routine or error routine.

In the event of an error, the PLC system would set the error status to TRUE and
set other members of the data structure accordingly, thus starting the error task.

Extended error handling model (beyond | EC).

To improve software quality, it is desirable to provide the users themselves with a
means of defining error conditions in a standardised form. A language construct
like “asserted conditions’ could be used for this. In this case, the programmer
would implement the application with checks.

278 7 Innovative PLC Programming Systems

For example:

- Isthevalue of avariable within the limits that apply at this program location?
- Do two variables match?

FBD:
A

Narl _{vuL (ASSERTION > 0) AND
(ASSERTION < 1000)
Var2 ‘ ADD

Var3 Cail

LD Varl
MUL Var2
ASSERTION((CR > 0) AND (CR < 1000))
ADD Var3
ST Coil

Examplelﬂl4[For detection of run-time errors, it should be possible to implement checks
that are calculated by the system itself. In the graphical languages, connections could be
secured with assertion symbols. Expressions should be written in one of the languages of
IEC 61131-3 (e.g. ST).

Such assertions can be simple expressions for the Current Result in IL, as shown in
Example Assertions can be used to check “critical” values at run time.
Complex expressions can also be employed to compare input and output values,
check for consistency or check important process parameters for logical relations.

Some systems provide automatic error checking facilities, e.g. for array indices,
i.e. the index in an array must not be above the upper or below the lower limit of
the array. Thisis supported by IEC 61131-3, see Chapter 3.

The response in the event of a violation of an assertion must be configurable, e.g.:
Stop program; issue error message to visualisation system. For more sophisticated
“exception handling”, multiple error routines should be assignable to different
assertions. These routines should have special privileges, such as the right to stop
or restart the PLC system.

At present, assertion conditions and the associated error responses (without special
privileges) till have to be written by users themselves, which is not always an
ideal solution from the point of view of program readability.

7.11 Hardware-Dependence 279

The architecture of error handling is evident throughout a program, and is at
present dependent on the manufacturer. The lack of standardised error detection
and error handling routines makes porting of applications between different
systems difficult, requiring specially trained system experts.

[7]11 Har dwar e-Dependencd

Studies have shown that even sophisticated cross-compilers can rarely auto-
matically cross-compile more than 60% of a non-IEC 61131-3 PLC application to
an |EC 61131-3 programming system. The reason is that the programs are heavily
hardware-dependent. Custom routines are used to control special hardware, or
specialised hardware addresses (status registers, system memory,...) are accessed.

IEC 61131-3 does not set out to eliminate the individuality of manufacturers. After
all, a wide variety of software and hardware ensures high functionality. To ease
portability, IEC 61131-3 provides the following mechanisms:

- All external information a program needs should be provided by IEC 61131-3-
conformant global variables, access paths or communication FBs (see
|IEC 61131-5).

- Hardware /O addresses used have to be declared in the PROGRAM or
configuration scope.

- Hardware-dependent features have to be listed in a specia table that
manufacturers have to provide with their software.

The list of implementation-dependent parametersis given in Appendix F.

712 Readiness for New Functionality

Implementing the functionality of the new generation of fully graphical
programming systems initially entails far greater overheads than that of existing
systems. Close co-operation between hardware and software manufacturers is
therefore essential to keep costs down. PLCopen, an independent group of PLC
software and hardware manufacturers, represents one step in this direction.

The European Community has conducted several projects to increase co-
operation within the industry.

280 7 Innovative PLC Programming Systems

Theamisto:

- enable users to re-use applications on different platforms, thereby saving on
development and testing,

- standardise interfaces (like OLE or OPC) to allow common development of
tools (like logic analysers or simulation).

|Z|12.1 Exchange of programsand datal

If a user is using different PLC systems, it is often a problem to replace program
blocks during development (static program exchange) or exchange data between
the different systems during operation (dynamic data exchange). This is shown in
Figure[7.9

To exchange data, communication function blocks are used during execution of
a PLC program to send data information to another resource or task. As this
resource might have a different processor or operating system, data must be
exchanged in a general format, independent of individual PLC systems, which can
be understood by all systems involved.

|EC 61131-5 defines the interfaces of standard function blocks for communication,
but the structure and contents (semantics) of the information transferred is left
open.

Program exchange is performed by copying a POU from one project to another,
to re-use its functionality without re-writing it. Most programming systems support
this. At present, this can often only be done one POU at a time (by copying the
POU into the project). PLCopen has defined a data format which can carry
additional information like author, verification information, etc. The next step in
this process will be the definition of a source library to keep sources.

7.12 Readiness for New Functionality 281

Project A Project B
Prog A Prog B

—Cwy

a) Programming system supports copying of an FB
(dtatic program exchange)

PLCA Data Packet PLCB

Prog A

Contents:

Date:

Author:
FB Source: FB
>

b) PLC A sends datato PLC B (dynamic data exchance)

a2

Figure Q.DStatic program exchange (&) and dynamic data exchange (b) between two
different projects and PLC families.

|Z|12.2 Extension with additional software packagesl

Some of today's IEC 61131-3 programming systems use the same operating
system, but they are implemented completely differently and it is hard to imagine
being able to use components of one programming system in another. Most
systems even lack the modularity required for this purpose, athough today’s
operating systems provide the necessary support.

A possible modular structure of a programming system is shown in Figure[7.10]

282 7 Innovative PLC Programming Systems

| Programming System Manager |

(S T S S S

Language Compiler, Test& Project Device Documen- Others...
. Linker, Commis- Manager Manager tation
Editors -
System sioning
Config-)
urator Com.mum»
cations
Manager

N,

| Hardware-Dependent Modules |

Figure |Z|10[|VI odular structure of a PLC programming system is a requirement for future
extensions to the system

At present, no standard exists for the architecture, nor for the method of
communication (e.g. using files, OLE, OPC, classlibraries, etc.).

Possible additions to the components shown above include:

- Plant design tools,

- Simulation tools,

- General-purpose data management systems,

- Specialised editors for parameters,

- Logic analysers,

- Plant diagnostics,

- Interfacesto PDA systems, SCADA systems, logging devices,
- Interfacesto CAD systems,

- Network administration.

Main Advantages of |IEC 61131-3|

Chapter 1 outlines goals and benefits of IEC 61131-3 for manufacturers and users.
How well does this programming standard live up to expectations?

Many features and concepts of this way of programming PLCs have been
described and explained in previous chapters. The core concepts are summarised
again here.

The following outstanding features of PLC programming with 1EC 61131-3
deserve special notice:

- Convenience and security with variables and data types,
- Blockswith extended capabilities,

- PLC configuration with run-time behaviour,

- Uniform programming languages,

- Structured PLC programs,

- Trend towards open programming Systems.

Bl1 Convenience and Security with Variables and Data Types|

Local and global variablesinstead of hardware addresses
Formerly, all data memory of a PLC was accessed using global addresses, and the
programmer had to take care that one part of a program did not overwrite the data
of another part. This applied particularly to 1/O addresses, flags and data blocks.
IEC 61131-3 replaces all global hardware addresses by named variables with a
defined scope: the programming system automatically distinguishes between
global variables and variables local to a POU. Global addresses can be accessed
by assigning the address to a named variable in the declaration part and using this
variablein the program.

Type-oriented access to PLC data

284 8 Main Advantages of IEC 61131-3

PLC programmers used to have to be careful to use the same data type when rea-
ding or writing to individual PLC addresses. It was possible to interpret the same
memory location as an integer at one place in a program, and as a floating-point
number at another.

IEC 61131-3 prevents such programming errors from occurring, as each variable
(including direct hardware addresses) must be assigned a data type. The pro-
gramming system can then check that all accesses use the proper data type.

Defined initial values for user data

All datais explicitly declared in the form of a variable, and assigned a data type in
the declaration. Each data type has, either by default or as specified by the user, a
defined initial value, so each and every variable used in a program is aways
correctly initialised in accordance with its properties.

Variables can be declared to be retentive (with a RETAIN qualifier). They are then
automatically assigned to a battery-backed area of memory by the programming
system.

Arrays and data structures for every application

Building on the predefined data types, the PLC programmer can design arrays and
other complex data structures to match the application, asis the practice with high-
level languages.

Limits of array indices and ranges of variable values are checked by the pro-
gramming system as well as by the PLC system at run time.

Unified declaration of variables
The extensive facilities for using variables are generally identical in all the
languages defined by |EC 61131.

Bl2 Blocks with Extended Capabilities|

Reuse of blocks

Blocks (POUSs), such as functions and function blocks, can be designed to be inde-
pendent of the target system used. This makes it possible to have libraries of re-
usable blocks, available for multiple platforms.

Parameters of a function block, input as well as output, and local data of each
function block instance, keep their values between calls. Each instance of a func-
tion block has its own data area in memory, where it can perform its calculations
independently of external data. It is not necessary to call a data block for the FB to
work on.

Programs can also be used in several instances and be assigned to different tasks
of one CPU.

8.3 PLC Configuration with Run-Time Behaviour 285

Efficient assignment of block parameters
The standard provides a variety of mechanisms for passing data to and from
blocks:

- VAR _INPUT: Value of avariable

- VAR IN_OUT: Pointer to avariable

- VAR OUTPUT: Return value

- VAR EXTERNAL: Global variable of another POU

- VAR _ACCESS: Access path within a configuration.

Until now, the only itemsin thislist that have been provided by most PLC systems
have been global variables and the capability for passing values to a called block
(but not for returning a value).

Standardised PLC functionality
To standardise typical PLC functionality, |EC 61131-3 defines a set of standard
functions and function blocks. The calling interface, the graphical layout and the
run-time behaviour of theseis strictly defined by the standard.

This standard “library” for PLC systems is an important foundation for uniform
and manufacturer-independent training, programming and documentation.

3 PL C Configuration with Run-Time Behaviour |

Configurations structure PLC projects

Tasks and programs are assigned to the controller hardware at the highest level of
a PLC project (the configuration). This is where the run-time properties, interfaces
to the outside, PLC addresses and |/Os are defined for the various program parts.

Run-time features for PLC programs
Until now, the methods of specifying run-time properties, like cycle time and prio-
rity of programs, have often been system-specific. With IEC 61131-3, such para-
meters can be specified and documented individually by defining tasks.

PLC programs must not be recursive. The amount of memory required to hold
the program at run time can therefore be determined off-line, and the programs are
protected from unintentional recursion.

286 8 Main Advantages of IEC 61131-3

Bl4 Uniform Programming L anguages |

IEC 61131-3 defines five programming languages, which can cover a wide range
of applications.

As aresult of this international standard, PLC specidlists will in future receive
more uniform training, and will “speak the same language” wherever they are em-
ployed.

The cost of training will be reduced, as only specific features of each new con-
troller system have to be learned.

Documentation will be more uniform, even if hardware from more than one
vendor is being used.

Bl5 Structured PL C Programs|

The various language elements of IEC 61131-3 allow clear structuring of appli-
cations, from definitions of blocks and data up to the hardware configuration.

This supports structured programming (top-down and bottom-up) and facilitates
service and maintenance of applications.

The “structuring language”, Sequential Function Chart, also enables users to
formulate complex automation tasks clearly and in an application-oriented way.

Bl6 Trend towards Open PLC Programming Systems|

Standardisation of programming languages leads to standardisation of software,
which makes vendor-independent, portable programs feasible, as is, for example,
already the case in the personal computer domain with programming languages
like assembler, COBOL and, most notably, C. The “feature tables’ of IEC 61131-3
provide a basis for comparing programming systems with the same basic functio-
nality from different vendors. There will still be differences between the systems
of different manufacturers, but these will mainly be found in additional tools like
logic analysers or off-line simulation, rather than in the programming languages
themselves.

The common look and feel in PLC programming will become international and
bring the separate markets in Europe, the US or Asia closer together.

8.6 Trend towards Open PLC Programming Systems 287

IEC 61131-3
PLC Programming System

Compilers

Editors

Import
Export

\/

Standardised
Basic Tools

HMI

Visualisation

7]

Simulation

Integrated

PLC Programming System

Figure El.ﬂ]’rend towards open, standardised components built on IEC 61131-3-compliant
programming systems

The new generation of PLC programming systems will have a standardised basic
functionality, plus highly sophisticated additional tools to cover a wide range of
applications.

As shown in Figure, standardisation by 1EC 61131-3 promotes integrated
systems, built from standardised components like editors, compilers, export and
import-utilities, with open, re-usable interfaces.

Tools which are traditionally sold as separate packages, like HMI, simulation or
visualisation, will cause de facto interface standards to be established for these
components.

288 8 Main Advantages of IEC 61131-3

B|7 Conclusion|

IEC 61131-3 will cause PLC manufacturers and users to give up old habits for a
new, state-of-the-art programming technology. A comprehensive standard like
IEC 61131 was necessary to achieve a uniform environment for innovating the
configuration and programming of PLC systems.

This manufacturer-independent standard will reduce the training and familiarisa-
tion time for PLC programmers, programs written will be more reliable, and the
functionality of PLC systems will catch up with the powerful software develop-
ment environments available for PCs today.

Compliance with |EC 61131-3, migration paths from legacy systems towards the
new architectures, and a powerful, ergonomic user interface will be the most im-
portant criteria for users for a wide acceptance of the new generation of PLC pro-
gramming systems.

Today's complex requirements and economic constraints will lead to flexible,
open, and therefore manufacturer-independent PLC programming systems.

O] Progr amming by Configuring with |EC 61499

Programming using graphical elements taken from the “real world” of the appli-
cation to be programmed is becoming more and more important.

With the graphical languages LD, FBD or SFC of IEC 61131-3 previoudy dis-
cussed, data flow and logical execution sequence can be programmed and docu-
mented using symbols and names. However, it is also desirable to be able to dis-
play the topological distribution of programs, their general configuration and inter-
connections to other parts of a distributed automation project in a graphical
manner. This takes place at a higher, more abstract level than the programming of
POUs described so far.

The tools for configuring complex and distributed applications are called
configuration editors. Program parts, such as function blocks, are combined to
form larger units. Thisis done by interconnection of function blocks.

In order to standardise unified language elements for this purpose, work is current-
ly being carried out on international standard 1EC 61499, as a supplement to the
existing IEC 61131. This chapter gives a brief summary of the basic concepts and
ideas of this additional standard and explains its relationship with IEC 61131. The
subject of this new standard would need to be discussed in greater detail in another
book.

Bl1 Programming by FB I nter connection with | EC 61131-3]|

In order to clarify the differences between |EC 61499 and |EC 61131-3, we shall
first ook at some special features of distributed programming.

The programming languages described in Chapter 4 are used to define algorithms
for blocks. Function blocks and functions call each other, exchange information by
means of their parameters and form a program in conjunction with a POU of type
PROGRAM. A program runs as a task on a resource (CPU of a PLC).
IEC 61131-3 essentially concentrates on describing single programs together with

290 9 Programming by Configuring with IEC 61499

their execution conditions. Information exchange between programs takes place
using ACCESS variables or global data areas. This topic is discussed in Section
[9 and illustrated by Figure[7]8.

Complex, distributed automation tasks have an extensive communication and exe-
cution structure. Intensive data exchange takes place between geographically sepa-
rate control units. The semantic and temporal dependencies and conditions have to
be specified.

To do this, programs are assigned to tasks of network nodes, execution con-
ditions are defined as described in Section[g[], and the inputs and outputs of pro-
grams (such as network addresses or parameter values) are interconnected.

Creating distributed automation solutions, i.e. configuring function blocks for
physically different and geographically separate hardware and synchronising their
execution, is the subject of future standard IEC 61499.

2 |EC 61499 — The Programming Standard for Distributed
PLC Systems|

The sequential invocation of blocks defined in IEC 61131-3 is not a suitable
method for program structuring in distributed systems. This is already apparent in
FigureIZ|8. The goal of adistributed, decentralised system is to distribute programs
between severa control units and to execute them in parallel (in contrast to
sequential execution with invocation by CAL). Here it is essential to ensure data
consistency between nodes of the networked system, i.e. to define exact times for
mutual data exchange.
Two kinds of information exchange play an essential part in IEC 61499:;

1) Dataflow of user data,
2) Control flow, which controls the validity of user data as event information.

The interaction of data and control flow could also be programmed by means of
IEC 61131-3 using global variables and access paths. But the resulting overall
program can easily become hard to read and slower to execute.

In order to describe the interactions between program parts and elements of
control hardware within a distributed, networked automation system easily and
exactly, |IEC 61499 uses a model (“top-down” approach) with several hierarchical
levels:

- System - Application
- Device - Function block
- Resource

9.2 IEC 61499 — The Programming Standard for Distributed PLC Systems 291

The definitions of the terms Resource and Function Block are, however, wider
than those of IEC 61131-3, as will be explained in this chapter. The IEC standard
committees will have to co-ordinate the termsin both standards.

Instead of assigning PROGRAM and TASK to a resource, function blocks in
IEC 61499 can be assigned run-time properties directly via the resource .

2.1 System model |

In area automation environment severa control units, referred to here as devices,
execute the same or different applications in paralel. This is outlined in Figure

D.1]

Communication network
|]

Device 1 Device 2 Device 3 Device 4

Application A
1 1

Application B
Appl. C

1 1 1 1
| Automation process to be controlled |

Figure El.ﬂ:ontrol of areal process can be distributed between several devices. Asin
IEC 61131-3, severa programs can also be configured for one device. The program parts
interchange information via communication networks.

2.2 Device model |

Closer examination of a device, asin Figure[9.2] shows that it consists of:

- itsapplication programs,

- aninterface to the communication network,

- aninterface to the automation process,

- the device hardware, on which the resources run.

A resource represents an independent executable unit with parameters (a task in
the general sense). Several resources can run on each device, and they can perform
the same or different applications.

292 9 Programming by Configuring with IEC 61499

IEC 61499 uses two views of a distributed program, which are explained in this
chapter. On the one hand, this standard looks at the hierarchy of System—
Device—Resource, in order to describe system structure and the corresponding
run-time properties. On the other hand, it also defines the user-oriented view of a
distributed program. This user view is summarised by application and function
block models that are discussed later in this chapter.

Communicqtion network

Communication interface

Resource x Resource y Resource z

Application A

Appl.C

Process interface

Automation process to be controlled

Figure ElZﬂ\ device can contain several resources, which use common interfaces to
exchange information with other control units and the automation process.

BJ2.3 Resour ce model |

A resource consists of function blocks, which exchange event as well as data
information using special interfaces. There are two kinds of function blocks:

1) Service interface function blocks, which are standard FBs and form the inter-
facesto the automation process and the communication network.
2) User-defined function blocks, which make up the actual application program
(algorithm).
Asin|EC 61131-3, there is a distinction between FB type and FB instance.
Run-time properties, such as the maximum number of instances, execution time,

number of connections etc., can be assigned to each function block within the
resource.

9.2 IEC 61499 — The Programming Standard for Distributed PLC Systems 293

)

Communication interface

Service
interface
FB

Events | Data

Application

L
— [

FB

L
' L
L J

FBs (Algorithms)

Events J/ Data

Service
interface
FB

Process interface

)

Figure Ejs D\ resource consists of function blocks for controlling and data processing
(algorithms) together with interface blocks (communication/ process).

The interconnection of FBs by the user is not carried out at resource level, but at
application level (see next section). The real information exchange between the
FBs of the application program takes place “invisibly” for the user via the com-
munication and process interfaces.

An application can be implemented on one or more resources.

Bl2.4 Application model |

This section deals with the user-oriented view of a program. This view corres-
ponds to the horizontal, grey “Application” bar in Figure which can extend
over several devices or resources.

The application level forms the real programming level because it is here that
the FBs are interconnected with one another, independently of the resources on
which they run. It describes the application — which may subsequently be
distributed amongst several resources.

After the application program, consisting of several FBs, has been assigned to
the resources and the program has been started, communication takes place
transparently via the service interfaces with the connections specified by the user.

Figure@ shows how an application is made up of both controlling parts (with
events) and data processing parts (algorithms). Here the different graphical repre-
sentation to that of IEC 61131-3 can be seen.

294 9 Programming by Configuring with IEC 61499

Control Control — — — Control

Algorithm Algorithm Algorithm

I 1 |

— — — Control flow Events
Data flow Data

Figure E]4.|]The application consists of interconnected function blocks; each of which has
both controlling (control flow) and data processing (data flow) functions.

Control and data information always flows into a function block from the left and
is passed on after processing from the outputs on the right.

Bl2.5 Function block mode |

The function blocks are the smallest program units (like POUs). Unlike the FBs of
IEC 61131-3, afunction block in IEC 61499 generally consists of two parts:

1) Execution control: Creation and processing of events with control inputs and
outputs (control flow),

2) Algorithm with data inputs and outputs and internal data (data flow and
processing).

These function blocks can be specified in textual or graphical form. Function
blocks are instantiated for programming, as in IEC 61131-3. The language ele-
ments for FB interface description are therefore very similar, see al'so Chapter 2.

Figure@ shows the graphical representation of a function block in accordance
with IEC 61499.

The agorithm part is programmed in IEC 61131-3 (like a POU body).

The execution control part is programmed using a state diagram or sequential
function chart (SFC in IEC 61131-3). The events are input values for state
diagrams, or execution control charts (ECC) . These ECCs control the execution
times of the algorithm or parts of it depending on the actual state and incoming
events.

9.2 IEC 61499 — The Programming Standard for Distributed PLC Systems 295

Instance name

Event — Execution — Event
inputs | control — outputs
Identifier
Data ™ | Algorithm T Data
inputs — with internal data [outputs

Figure ES.ESraphical representation of afunction block. Details of execution control, the
internal algorithm and internal data are not shown at thislevel.

Selection&Counter
EVENT —| INITI INITO EVENT
EVENT —LREQ CNEf— EVENT

SEL_Counter

UINT
BOOL
INT
INT

G
INO
IN1

START SEL_OUT

COUNT

— INT
I~ UINT 1

A,
No)
| INIT_STATE |—| INIT | INITO | | MAINisTATE|—| MAIN| CNF |

Example P]1[JFunction block with typed formal parameters and state diagram (ECC)

INITI ——

REQ T~

INIT_STATE |_

N MAIN_STATEI— N| MAIN | CNE
Algorithm INIT Algorithm MAIN

1+

Example Bl 2[JExecution control of Examplg9.] using Sequential Function Chart (SFC) as
defined in IEC 61131-3. The output events CNF and INITO are set by the application
program and controlled by calling standard function blocks.

296 9 Programming by Configuring with IEC 61499

Example contains function block Sel Counter (instance name
Selection&Counter), which consists of an ECC control part and the algorithm part,
which itself consists of the two algorithms INIT and MAIN. The execution control
determines which algorithm part will be active at what time.

In Example when the event INITI occurs, the FB control will change from
initial state START to state INIT_STATE and algorithm INIT will be executed.
Afterwards event output variable INITO is set (action “N”), followed by a RESET
(i.e. asignal pulse). Now execution control evaluates the next transition. This has
the constant parameter “1” in this example, which means the condition is always
true, and leads back to state START. Incoming event REQ is processed ana
logously.

This behaviour is equivalent to the actions of Sequential Function Chart (SFC) in
IEC 61131-3 and isillustrated by Example[9.2. IEC 61499 assumes that it is more
favourable to specify the execution control using state diagrams, as with this
method only one state can be active at a time. In SFC this can be achieved by
prohibiting simultaneous branches.

Example[9.3]shows the textual definition of the FB type in Example.1]

The keyword WITH connects an event input/ output with a data input/ output. If an
event parameter is set, it indicates the validity of the corresponding data line
(assigned by WITH).

Composite function blocks

For the purposes of clear, object-oriented representation, several basic function
blocks can be combined to form a new composite function block, which looks just
like a“normal” function block on the outside, as shown in Figure[9.6,

Composite function blocks do not have their own execution control part, as thisis
the sum of the controls of all the basic FBs of which it is composed. In the
graphical representation in Figure[2.6|a) the FB header is therefore “empty”.

9.2 IEC 61499 — The Programming Standard for Distributed PLC Systems

FUNCTION_BLOCK Sel_Counter
EVENT_INPUT

INITI WITH START;
REQ WITH G, INO, IN1;

END_EVENT

EVENT_OUTPUT

INITO WITH COUNT;
CNF WITH SEL_OUT, COUNT,

END_EVENT
VAR_INPUT
START: UINT;
G: BOOL;
INO, IN1: INT;
END_VAR
VAR_OUTPUT
SEL_OUT: INT;
COUNT: UINT;
END_VAR
VAR

INTERNAL_COUNT: UINT;

END_VAR

END_FUNCTION_BLOCK

ALGORITHM INIT:
INTERNAL_COUNT := START,
COUNT := INTERNAL_COUNT;

END_ALGORITHM

ALGORITHM MAIN:
IF G =0 THEN SEL_OUT := INO;
ELSE

SEL_OUT := IN1;
END_IF;
INTERNAL_COUNT :=
INTERNAL_COUNT +1;
COUNT := INTERNAL_COUNT;
END_ALGORITHM

297

Example. 3[|Exampl ein textual representation (Structured Text ST of |EC 61131-3).

a)

b)
FB name
1 [
FB type
i =

Heating_1stFloor

NIT INITO
REQ CNE

Time

Heating_Control

tmp Expansion [—
ControlNum |—
cm A_Message +—

Figure pJ6.[; composite function block consists of several interconnected function blocks
with a common interface.
a) Example: Internal structure of a composite FB,

b) Example: External appearance of this FB.

298 9 Programming by Configuring with IEC 61499

BJ2.6 Creating an application]|

Future 1EC 61499 application programmers will write programs by configuring
and assigning parameters to ready-made function blocks.

FB Explanation

Standard FBs e FBswith functiondlity asin IEC 61131-3

¢ Serviceinterface FBs (standardised communication
services)

* Event FBs (standardised event generation and processing)

User-defined FBs Algorithms and ECC execution control e.g. programmed with
IEC 61131-3

Table Ell.[bifferent types of function blocksin IEC 61499

The function blocksin Table can be implemented as basic or composite FBs.
For example, Event FBs provide functions for merging and splitting events or
creation of single or cyclic events.

A configuration editor is used for allocating blocks to resources (devices) and for
interconnecting FBs.

3 Overview of the Partsof IEC 61499]

The future standard IEC 61499 will consist of two parts, whose main contents are
summarised in Table[9.2]([I EC 61499-97]):

Parts Contents

1. Architecture Introduction and modelling, describes the vaidity,
defines common terms, specification of function blocks,
service interfaces, configuration and syntax.

2. Model development cycle | Contains descriptions supporting the life cycle of
distributed programs. Thisis still in the conceptual
phase (in 12/2000).

Table EIZ.DStructure and contents of future standard |EC 61499

10[{Contents of CD-ROM

[L0]1 I EC Programming Systems STEP 7 and OpenPCS|

The CD-ROM enclosed in this book contains the following information, examples
and programs:

1) STEP 7 Demo Software as a demo version for PLC programming with
IEC 61131-3 using the languages. STL, LAD, FBD, S7-GRAPH, S7-SCL,
CFC and S7—HiGrapr'E| running under Windows 95/98 and Windows NT

2) Open PCS as a demo version for PLC programming with |EC 61131-3 using
the languages: IL, Ladder, FBD, ST, SFC, a US-conformant Ladder editor
(including EN/ENO), as well as Smart PLC; running under Windows 3.x,
Windows 95/98 and Windows NT

3) IL examples of this book

4) Buyer's Guide for |IEC 61131-3-compliant programming systems.

File README.TXT on the CD contains important information about the instal-
lation and use of the files and programs. It shows how to copy the files onto hard
disk and gives tips on how to use the examples and the buyer's guide.

README.TXT is an ASCII file and can be read using any editor (e.g. in DOS
and Windows).

The files of the two programming systems are either self-extracting or in the
form of an installation package, i.e. they cannot be read immediately but must first
be decompressed or installed. No additional software is needed.

Demo versions of STEP 7 (Siemens) and OpenPCS (infoteam).

With the aid of the demo versions of two selected programming systems, readers

can program, modify, extend and test al the examples in this book or create

programs of their own in order to practise PLC programming with IEC 61131-3.
STEP 7 uses CFC and S7-HiGraph as tools for interconnecting FBs and for

programming with state diagrams. OpenPCS contains a run-time package Smart

PLC, which additionally allows execution of a PLC program on PC (offline

1 STL correspondsto IL, LAD to LD, S7-GRAPH to SFC, and S7-SCL to ST

300 10 Contents of CD-ROM

simulation). A CFC editor isincluded, as well as a Ladder editor, which combines
the advantages of 1EC 61131-3 programming with those of customary American-
style Ladder programming.

Hints on using and purchasing full software versions of both programming
systems (as well as hardware) can also be found in the relevant folders on the CD.

The authors are not responsible for the contents and correct functioning of these
demo versions. These software packages have only a restricted scope compared
with the full functionality of the corresponding products. Their useis only allowed
in conjunction with this book for learning and training purposes.

IL examples

To save the reader having to re-type the programming examples in this book, the
most important IL examples are provided on the CD. Further information about
these can also be found in README.TXT.

@2 Buyer's Guidefor |EC 61131-3 PL C Programming Systemsl

The CD-ROM also contains a buyer's guide as a file in the format “Word for
Windows Version 6.0 and higher”.
Contents of the buyer's guide (file BuyGuide.doc):
Buyer's Guidefor IEC 61131-3 PL C Programming Systems
Checklistsfor evaluation of PLC programming systems
Using the checklists
Checklistsfor PLC programming systems
Compliance with IEC 61131-3
Language scope, decompilation and cross-compilation
Tools
Working environment, openness, documentation
General, costs

This buyer's guide essentially consists of tables, or “checklists’, which permit
objective evaluation of PLC programming systems compliant with the standard
IEC 61131-3. The use of these lists is described in detail before explaining each
criterion for PLC programming systems.

The file can be copied for multiple product evaluation and individual editing of
the checklists. These tables are stored on the CD in four different file formats:

1) Microsoft Word for Windows, Version 6.0 and higher (file TABLES.DOC),
2) Microsoft Excel for Windows, Version 4.0 and higher (file TABLES.XLS),
3) ANSI text (file TABLES.ANS),
4) ASCII text (file TABLES.ASC).

The Excel version is advantageous, as all calculations can be done automatically.

AlStandard Functiond

This appendix contains a complete overview of al the standard PLC functions
described by means of examples in Chapter 2. For every standard function of 1EC
61131-3, the following information is given:

- Graphical declaration
- (Semantic) description
- Specification of some functionsin Structured Text (ST).

Standard functions have input variables (formal parameters) as well as a function
value (the returned value of the function). Some input variables are not named. In
order to describe their functional behaviour the following conventions apply:

- Anindividua input variable without name is designated as"IN"
- Severa input variables without names are numbered "IN1, IN2, ..., INn
- Thefunction valueis designated as"F".

General datatypes (such as ANY or ANY_BIT) are used in the description. Their
meaning is explained in Section 4.3 and they are summarised in Table @9. The
designator ANY here stands for one of the data types: ANY_BIT, ANY_NUM,
STRING, ANY_DATE or TIME.

Many standard functions have a textual name as well as an alternative repre-
sentation with a symbol (e.g. ADD and "+"). In the figures and tables, both
versions are given.

302 A Standard Functions

A[Il Type Conversion Functions

PR * T ** | %%
ANY_REAL — TRUNC — ANY_INT
ANY BIT — BCD_TO_** {— ANY_INT
ANY_INT — *_.TO_BCD — ANY_BIT
* Input data type, e.g. REAL
*x Output datatype, e.g. INT
* TO_** Function name, e.g. REAL_TO_INT

Figure Ell.ﬂBraphi cal declarations of the type conversion functions

These standard functions convert the input variable into the data type of their
function value (type conversion).

Name Function / Description

* TO ** When REAL values are converted to INT values, they are rounded up
or down to the next whole number. Halves, e.g. 0.5 or 0.05, are
rounded up.

TRUNC This function cuts off the places of a REAL value after the decimal
point to form an integer value.

BCD The input and/or output values of type ANY_BIT represent BCD-
coded bit strings for the data types BY TE, WORD, DWORD and
LWORD. BCD coding is not defined by IEC 61131-3, itis
implementation-dependent.

Table El.[bescri ption of the type conversion functions

A.2 Numerical Functions

AP Numerical Functions

AI\IV_I\II 1\ ABS — AI\IV_I\II I1Vi]
ANY_REAL — ok — ANY_REAL
*** gands for: SQRT, LN, LOG, EXP,
SIN, COS, TAN,

ASIN, ACOS, ATAN

FigureElZ.[braphical declarations of the numerical functions

303

Name Function Description

ABS Absolute value F:=|IN|

SQRT Square root F:=vVIN

LN Natural logarithm F:=loge (IN)
LOG Logarithm base 10 F :=log1g (IN)
EXP Exponent base e F:=¢eN

SIN Sing, IN in radians F:=SIN (IN)
COS Cosine, IN in radians F := COS (IN)
TAN Tangent, IN in radians F:=TAN (IN)
ASIN Principa arc sine F:= ARCSIN (IN)
ACOS Principal arc cosine F := ARCCOS (IN)
ATAN Principal arc tangent F:= ARCTAN (IN)

TableElZ[beﬂ:ription of the numerical functions

304 A Standard Functions

AIB Arithmetic Functions

ANY_NLIN el ANY_NIUIM o
ANY_NUM—] ANY_NUM—] — ANY_NUM
ANY_NUM—] L ANY_NUM
*** dandsfor: ADD, + **% gands for: SUB, -
MULT, * DIV, /

FigureEl&EBraphical declarations of the arithmetic functions ADD, MUL, SUB and DIV

ANY_INT— MOD ANY_REAL — ™
ANY_INT—] — ANY_NUM ANY_NUM — — ANY_REAL
*** gtandsfor: EXPT, **
ANY_NUM— ** |— ANY_NUM
*** gands for: MOVE, :=

Figure Rl4[Jraphical declarations of the standard arithmetic functions MOD, EXPT and
MOVE

Name Symbol | Function Description

ADD + Addition F:=IN1+IN2+..+INn
MUL * Multiplication F:=IN1*IN2*..*INn
SUB - Subtraction F:=IN1-IN2

DIV / Division F:=IN1/IN2

MOD Remainder formation F:=IN1- (IN1Y IN2)*IN2
EXPT *x Exponentiation F:= IN1'N2

MOVE = Assignment F:=IN

Table ES.[ba:ri ption of the arithmetic functions

A.4 Bit-Shift Functions 305

In the case of the division of integers, the result must aso be an integer. If
necessary, the result is truncated in the direction of zero.

If the input parameter IN2 is zero, an error is reported at run time with error
cause "division by zero", see also Appendix E.

A4 Bit-Shift Functions|

*kk
ANY_BIT —IN
UINT —N — ANY_BIT
*** gands for: SHL, SHR, ROL, ROR

Figure ElS.[braphical declarations of the bit-shift functions SHL, SHR, ROR and ROL

Name Function Description

SHL Shift to the left Shift IN to the left by N bits, fill with
zeros from the right

SHR Shift to the right Shift IN to the right by N bits, fill with
zeros from the | eft

ROR Rotate to the right Shift IN to the right by N bits, in a
circle

ROL Rotate to the | eft Shift IN to the left by N bits, in a
circle

TableEI4[bwcri ption of the bit-shift functions

306 A Standard Functions

Alp Bitwise Boolean Functions

ANY BIT

ANY-BIF NOT

ANY_BIT

ANY_BIT

— ANY_BIT

*** gands for:

AND, &, OR, >=1, XOR, =2k+1

ANY—BH

Figure EG.EBraphi cal declarations of the bitwise Boolean functions AND, OR, XOR and

NOT

Name Symbol | Function Description

AND & Bit-by-bit AND F:=IN1&IN2&...&INn

OR >=1 Bit-by-bit OR F:=IN1vIN2v..vINn

XOR =2k+1 | Bit-by-bit XOR F :=IN1 XOR IN2 XOR ... XOR INn
NOT Negation F:==IN

Table A]5.[Description of the bitwise Boolean functions

The logic operation is performed on the input parameters bit-by-bit. That is, every
bit position of one input is gated with the corresponding bit position of the other
input and the result is stored in the same hit position of the function value.

An inversion can also be represented graphically by a circle "o" at the Boolean
input or output of afunction.

A.6 Selection Functions for Max., Min. and Limit

Al Selection Functionsfor Max., Min. and Limit

Lany 1 = LIMIT
ANY —
ANY — MN
— ANY —IN
ANY — — ANY ANY —MX — ANY
*** gands for: MIN, MAX

FigureEl?.[braphical declarations of the selection functions MAX, MIN and LIMIT

307

Name Function Description

MAX Maximum formation F:=MAX (IN1,IN2, ..., INn)
MIN Minimum formation F:=MIN (IN1,IN2, ..., INn)
LIMIT Limit F := MIN (MAX (IN, MN), MX)

TableElG[b@cription of the selection functions MAX, MIN and LIMIT

These three standard functions are specified by declarationsin ST in Example[A.]]

and Example[A.2]
FUNCTION MAX : ANY (* maximum formation; ANY stands for INT, ... *)
VAR_INPUT IN1,IN2, ... INn : ANY; END_VAR
VAR Elem : ANY; END_VAR
IF IN1 > IN2 THEN (* first comparison *)
Elem :=IN1,;

ELSE
Elem :=1IN2;

END_IF;

IF IN3 > Elem THEN (* next comparison *)
Elem :=IN3;

END_IF;

IF INn > Elem THEN (* last comparison *)
Elem :=INn;

END_IF;

MAX := Elem; (* writing the function value *)

END_FUNCTION

ExampleEll[bpecification of the selection function MAX in ST; for MIN replace dl ,>*

with <.

308 A Standard Functions

The specification of the MIN function can be obtained by replacing al
occurrences of ">" by "<" inthe MAX specification in Example

FUNCTION LIMIT : ANY (* limit formation *)
VAR_INPUT
MN : ANY;
IN :ANY;
MX : ANY;
END_VAR
MAX = MIN (MAX (IN, MN), MX); (* call of MIN of MAX *)

END_FUNCTION

Example [A]2[Bpecification of the selection function LIMIT in ST

[A]7 Selection Functions for Binary Selection and Multiplexers|

MUX
SEL ANY_INT—K
BOOL —G ANY —
ANY —INO —
ANY —{IN1 |— ANY ANY — — ANY

FigureA]8[raphical declarations of the selection functions SEL and MUX

Name Function Description
SEL Binary selection F:=INQ, if G=0, otherwise IN1
MUX Multiplexer F:=INi, if K =i

Table EI?.[beﬂ:ri ption of the selection functions SEL and MUX

A.8 Comparison Functions 309

These two standard functions are specified in the following examples by decla-
rationin ST:

FUNCTION SEL : ANY (* binary selection *)
VAR_INPUT
G : BOOL;
INO : ANY;
INL : ANY;
END_VAR
IF G=0THEN
SEL := INO; (* selection of upper input *)
ELSE
SEL := IN1; (*selection of lower input *)
END_IF;

END_FUNCTION

Example [A]3[Bpecification of the selection function SEL in ST

FUNCTION MUX : ANY (* multiplexer *)
VAR_INPUT
K : ANY_INT;
INO : ANY;
IN1 : ANY;

INn : ANY;

END_VAR
IF (K <0) OR (K>n) THEN

... error message ; (* K negative or too large *)
END_IF;
CASE K OF

0: MUX := INO; (* selection of upper input *)

1: MUX := IN1; (* selection of upper input *)

n: MUX := INn; (* selection of lowest input *)

END_CASE;
END_FUNCTION

Example [A]4[Bpecification of the selection function MUX in ST

310 A Standard Functions

A[B Comparison Functions

ANY —oF *** ANY —oF *** I
ANY — ANY — — BOOL
ANY — — BOOL
*** gands for: GT, >, GE, >=, *** gands for: NE, <>
LT, <, LE, <=,
EQ =

FigureEl9.|]3raphical declarations of the comparison functions GT, GE, LT, LE, EQ, NE

Name Function Description

GT Comparison for ,,> “ F:=1,if INi > IN(i+1), otherwise 0
GE Comparison for,, > =" F:=1,if INi >= IN(i+1), otherwise 0
LT Comparison for,, < F:=1,if INi < IN(i+1), otherwise O
LE Comparison for, < =* F:=1,if INi <= IN(i+1), otherwise 0
EQ Comparison for,, = F:=1,if INi = IN(i+1), otherwise 0
NE Comparison for,, <>" F:=1,if INi <> IN(i+1), otherwise 0

Table A]8.[Description of the comparison functions

The specification of these standard functions is illustrated in Example[A.5 by the
declaration of GT in ST, from which the others can easily be derived.

FUNCTION GT: BOOL (* comparison for ‘greater than’ *)
VAR_INPUT IN1,IN2, ... INn : ANY; END_VAR
IF (IN1 > IN2)
AND (IN2 > IN3)

AND (IN(n-1) > INn) THEN

GT ;= TRUE; (* inputs are "sorted": in increasing monotonic sequence *)
ELSE

GT = FALSE; (* condition not fulfilled *)
END_IF;

END_FUNCTION

ExampleEISDSpecification of the comparison function GT in ST

A.9 Character String Functions 311

Al9 Character String Functions|

LEFT RIGHT
STRING —IN STRING —{IN
UINT —L — STRING UINT —L — STRING
MID
STRING —IN
UINT —L
UINT —P — STRING STRING — LEN [— INT

Figure E|10.|]3raphi cal declarations of the character string functions LEFT, RIGHT, MID
and LEN

CONCAT]
STRING —

STRING —

STRING — — STRING

FigureElll.[braphical declaration of the character string function CONCAT

INSERT DELETE
STRING —IN1 STRING —IN1
STRING —IN2 UINT —L
UINT —P — STRING UINT —P — STRING

Figure A]12.[raphical declarations of the character string functions INSERT and
DELETE

312 A Standard Functions

REPLACE
STRING —{IN1

STRING —{IN2 FIND
UNT —L STRING —{IN1
UNT —]P — STRING STRING —{IN2 [INT

FigureA]13[[raphical declarations of the character string functions REPLACE and FIND

Name Function Description

LEN Determines the length of a | F := number of the charactersin IN
character string

LEFT Starting section of a F := starting section with L characters
character string

RIGHT Final section of a character | F :=final section with L characters
string

MID Central section of a F := middle section from position P with L
character string characters

CONCAT Sequence of character F :=total character string
strings

INSERT Inserts one character string | F := total character string with new part
into another one from position P

DELETE Deletes sectionin a F := remaining character string with
character string deleted part (L characters) from

position P

REPLACE | Replacesasection of a F :=total character string with replaced
character string with part (L characters) from position P
another one

FIND Determines the position of | F := index of the found position,
asection in a character otherwise 0
string

Table EQ.[bescri ption of the character string functions

The positions of the characters within a character string of type STRING are
numbered starting with position "1".

A.10 Functions for Time Data Types 313

A0 Functionsfor Time Data Types

*kk *kk *kk
TIME—]IN1 TOD —]IN1 DT —{IN1
TIME—IN2 — TIME TIME —{IN2 — TOD TIME —]IN2 — DT

*** gandsfor: ADD, +, SUB, -

FigureEll4.|]13raphical declarations of the common functions for addition and subtraction
of time

*kk *kk *kk
DATE—IN1 TOD —IN1 DT —IN1
DATE —]IN2 — TIME TOD —{IN2 L TIME DT —IN2 — TIME
*** gands for: SUB, -

Figure A]15.[f5raphical declarations of the additional functions for subtraction of time

ik CONCAT
TIME —IN1 DT —IN1
ANY_NUM —IN2 — TIME TOD —{IN2 — DT
*** gands for: MUL, *, DIV, /

FigureEle Graphica declarations of the functions MUL, DIV and CONCAT for time

314

A Standard Functions

DT —

DATE_AND_TIME_TO_TIME_OF_DAY

— TOD

DT —

DATE_AND_TIME_TO_DATE

— DATE

Figure El?.[braphi cal declarations of the type conversion functions for time

The abbreviations TOD and DT can be employed as equivalents for the longer
keywords TIME_OF DAY and/or DATE_AND_TIME.

Al11 Functionsfor Enumerated Data Types|

The standard functions SEL, MUX, EQ and NE can also be employed in some
cases for enumerated data types. They are then applied as for integers (values of
enumerations correspond to constants "coded" by the programming system).

BlElandard Function Blockd

This appendix contains a complete overview of all the standard PLC function
blocks described by means of examples in Chapter 2. For every standard function
block of IEC 61131-3, the following information is given:

- Graphical declaration
- (Semantic) description
- Specification of some function blocksin Structured Text (ST).

In this book, the inputs and outputs of the standard FBs are given the names pre-
scribed by the current version of 1EC 61131-3 ([IEC 61131-3-94]). No allowance
has been made for the fact that the possibility of calling FBs as "IL operators' can
result in conflicts. These will necessitate either a change in the standard itself or a
change in nomenclature when implementing programming systems in accordance
with IEC 61131-3.

These conflicts occur with the IL operators (see also Section 4.1) LD, Rand S,
which need to be distinguished from the FB inputs LD, R and S when checking for
correct program syntax. These three formal operands could, for example, be called
LOAD, RESET and SET in future.

316 B Standard Function Blocks

B[l Bistable Elements (Flip-Flops)

| SR | RS

BOOL—S1 BOOL—S

BOOL—R Ql—BOOL BOOL—R1 Ql—BOOL

FigureB]1.[{raphical declarations of the bistable function blocks SR and RS

FUNCTION_BLOCK SR (* flip flop set dominant *)
VAR_INPUT
S1 : BOOL;
R : BOOL;
END_VAR
VAR_OUTPUT
Q1 : BOOL;
END_VAR
Q1 := S1O0R (NOT R AND Q1);
END_FUNCTION_BLOCK

FUNCTION_BLOCK RS (* flip flop reset dominant *)
VAR_INPUT
S : BOOL;
R1 : BOOL;
END_VAR
VAR_OUTPUT
Q1 : BOOL;
END_VAR
Q1 := NOT R1 AND (S OR Q1);
END_FUNCTION_BLOCK

ExampIeEll Specification of the bistable function blocks SR and RSin ST

These two flip-flops implement dominant setting and resetting.

B.2 Edge Detection 317

B[P Edge Detection

| R TRIG | F_TRIG

BOOL—CLK Q [—BOOL BOOL—CLK Q [—BOOL

Figure BJ2[[5raphical declarations of the function blocks R_TRIG and F_TRIG

FUNCTION_BLOCK R_TRIG (*rising edge *)
VAR_INPUT
CLK : BOOL;
END_VAR
VAR_OUTPUT
Q . BOOL;
END_VAR
VAR RETAIN
MEM: BOOL :=0; (* initialise edge flag *)
END_VAR
Q := CLK AND NOT MEM; (* recognise rising edge *)
MEM := CLK; (* reset edge flag *)
END_FUNCTION_BLOCK

FUNCTION_BLOCK F_TRIG (*falling edge *)
VAR_INPUT
CLK : BOOL;
END_VAR
VAR_OUTPUT
Q . BOOL;
END_VAR
VAR RETAIN
MEM: BOOL :=1; (* initialise edge flag *)
END_VAR
Q := NOT CLK AND NOT MEM,; (* recognise falling edge *)
MEM := NOT CLK; (* reset edge flag *)
END_FUNCTION_BLOCK

Example B]2[Jpecification of the function blocks R_TRIG and F_TRIG in ST
In the case of the function blocks R_TRIG and F_TRIG, it should be noted that

they detect an "edge" on the first call if the input of R_TRIG is TRUE or the input
of F_TRIG isFALSE.

318 B Standard Function Blocks

B[B Counters
[CTU | CTD
BOOL—PCU Q}—BoOOL BOOL—PCD Qf—BOOL
BOOL—R BOOL— LD
INT—{PV CV |—INT INT— PV CV }—INT

CTUD

BOOL—pPCU QU [—BOOL
BOOL—pPCD QD [—BOOL
BOOL—R
BOOL—LD
INT/PV CV [—INT

Figure B]3[Graphical declarations of the function blocks CTU, CTD and CTUD

FUNCTION_BLOCK CTU (* up counter *)
VAR_INPUT
CU : BOOL R_EDGE; (* CU with rising edge *)
R . BOOL;
PV : INT,
END_VAR
VAR_OUTPUT
Q . BOOL;
CV : INT;
END_VAR
IF R THEN (* reset counter *)
CcVv = 0;
ELSIF CU AND (CV <PV) THEN
CcVv = CV+1, (* count up *)
ENDIF;
Q = (CV >=PV); (* limit reached *)
END_FUNCTION_BLOCK

ExampIeE|3.[[Specification of the function blocks CTU and CTD in ST (continued on next
page)

B.4 Timers

FUNCTION_BLOCK CTD (* down counter *)
VAR_INPUT
CD : BOOL R_EDGE; (* CD with falling edge *)
LD : BOOL;
PV : INT,
END_VAR
VAR_OUTPUT
Q . BOOL;
CV : INT;
END_VAR
IF LD THEN (* reset counter *)
Ccv = PV,
ELSIF CD AND (CV > PV) THEN
CcVv = CV-1, (* count down *)
ENDIF;
Q = (CV<=0) (* zero reached *)
END_FUNCTION_BLOCK

Example B]3. (Continued)

FUNCTION_BLOCK CTUD (*up-down counter *)
VAR_INPUT
CU : BOOL R_EDGE; (* CU with rising edge *)
CD : BOOL R_EDGE; (* CD with falling edge *)
R : BOOL;
LD : BOOL;
PV : INT,
END_VAR
VAR_OUTPUT
QU : BOOL;
QD : BOOL;
CV : INT;
END_VAR
IF R THEN (* reset counter (reset dominant) *)
Cv = 0;
ELSIF LD THEN
Cv = PV; (* set to count value *)
ELSIF CU AND (CV <PV) THEN
Cv = CV +1,; (* count up *)
ELSIF CD AND (CV > PV) THEN
Cv = CV-1; (* count down *)
ENDIF;
QU (CV >= PV); (* limit reached *)
QD : (CV <=0); (* zero reached *)
END_FUNCTION_BLOCK

Example BJ4[Ppecification of the function block CTUD in ST

319

320 B Standard Function Blocks

B[4 Timers

I Kk

BOOL—{IN Q }—BoOL
TIME —PT ET{—TIME

*** dandsfor: TON,T---0, TOF,0---T, TP

Figure E|4.|]3raphical declarations of the function blocks TON, TOF and TP

Thetimers TP, TON and TOF are specified here using timing diagrams.

This time behaviour is only possible if the cycle time of the cyclic PLC program
in which the timer is used is negligibly small in comparison with the duration PT if
the timer is called only once in the cycle.

The diagrams show the behaviour of outputs Q and ET depending on input IN.
The time axis runs from left to right and is labelled "t". The Boolean variables IN
and Q change between "0" and "1" and the time value ET increases as shown.

IN —
Q €—>
PT P PT
pr| -
ET V
1 | | | >
t0 1 23] @ t5 Time t
t0+PT ©2+PT t4+PT

Figure B]5Jiming diagram for pulse timer TP depending on input IN

The standard FB "TP" acts as a pulse generator which supplies a pulse of constant
length at output Q when arising edge is detected at input IN. The time that has
elapsed so far can be read off at output ET at any time.

As can be seen from Figur, timers of type TP are not "retriggerable”. If the
intervals between the input pulses at IN are shorter than the pre-set time period, the
pulse duration still remains constant (see period [t2; t2+PT]). Timing therefore
does not begin again with every rising edge at IN.

B.4 Timers 321

Q
<—> <> <—>
PT PT PT
PT —
ET
. >
t0 1 t2 t3 t4 t5 Time t
tO+PT t4+PT

Figure EIG.[IH ming diagram for on-delay timer TON depending on input IN

The on-delay timer TON supplies the input value IN at Q with atime delay when a
rising edge is detected at IN. If input IN isonly "1" for a short pulse (shorter than
PT), the timer is not started for this edge.

The elapsed time can be read off at output ET.

Q
—| —|
PT PT
PT —
ET
. - >
t0 t1l t2t3t4 t5 Time t
t1+PT t5+PT

Figure E|7.|]I'i ming diagram for off-delay timer TOF depending on input IN
The off-delay timer performs the inverse function to TON i.e. it delays a falling
edge in the same way as TON delays arising one.

The behaviour of the timer TOF if PT is modified during timer operation isimple-
mentati on-dependent.

322 B Standard Function Blocks

BOOL—IN

RTC
Q

DT—(PDT CDT

— BOOL

—DT

Figure EIS.EBraphical declaration of the function block RTC (real time clock)

FUNCTION_BLOCK

VAR_INPUT

IN : BOOL,;
PDT : DATE_AND_TIME;

END_VAR
VAR_OUTPUT

Q . BOOL;
CDT : DATE_AND_TIME;

END_VAR

VAR
IN_Edge
Actual_Time :

END_VAR

IF IN_Edge (IN) THEN
Actual_Time := PDT;

ENDIF;

CDT :=Actual_Time;

Q = IN;

END_FUNCTION_BLOCK

RTC (* real time clock *)

: BOOL R_EDGE;
DATE_AND_TIME; (* PLC hardware clock *)

(* edge recognised? *)
(* load PLC clock *)

(* undefined without edge at IN *)
(* Q=1: no error *)

Example B]5[Bpecification of the function block RTC in ST

The real-time clock RTC supplies the current time including date. When a rising
edge is detected at IN, the time is set and runs aslong as IN remains"1". In areal
PLC system, input IN could indicate that the central power supply is on and that
the clock can therefore operate. After a power failure and/or cold restart of the
system, the time would be set on a “0- 1" transition. If no rising edge occurs at
input IN, CDT isregarded as "undefined".

ActualTime is used here (informally) to mean the central time in the PLC, which
can be recorded by software or, more usually, by a hardware clock. The realisation
of ActualTime is therefore implementati on-dependent.

ClIL Exampled

This appendix contains full examples of PLC programming with IEC 61131-3 for
each type of POU, to supplement the information given in Chapters 2 and 4.
These examples are to be found on the CD enclosed in this book.

Cl1 Example of a FUNCTION|

The function ByteExtr extracts the upper or lower byte of an input word and
returnsit as the function value:

FUNCTION ByteExtr : BYTE (* extract byte from word *)
(* beginning of declaration part *)

VAR_INPUT (* input variables *)

Word : WORD; (* word consists of upper + lower byte *)

Upper : BOOL; (* TRUE: take upper byte, else lower *)
END_VAR

(* beginning of instruction part *)

LD Upper (*extract upper or lower byte? *)
EQ FALSE (* lower? *)
JMPCN UpByte (* jump in the case of extraction of the upper byte *)
LD Word (* load word *)
JMP End (* nothing to do *)
UpByte: (* jump label *)
LD Word (* load word *)
SHR 8 (* shift upper byte 8 bits to the right *)
End: (* ready *)
WORD_TO_BYTE (* conversion for type compatibility *)
ST ByteExtr (* assignment to the function value *)
RET (* return with function value in CR *)

(* end of FUN *)
END_FUNCTION

Example C]1[Example of the declaration of afunctionin IL

324 C IL Examples

The ByteExtr function in Example C.1 has the input parameter "Word" of type
WORD and the Boolean input Upper. The value returned by the function is of type
BYTE. This function requires no local variables. The VAR ... VAR_END section
is therefore missing from the declaration part.

The returned value is in the current result (CR) when the function returns to the
calling routine with RET. At this point (jump label End:) the CR is of data type
WORD, because Word was previously loaded. The function value is of data type
BY TE after type conversion.

IEC 61131-3 always requires a strict "type compatibility” in cases like this. It is
the job of the programming system to check this consistently. This is why a
standard type conversion function (WORD_TO_BYTE) iscalled in Example

Example shows the instruction part of ByteExtr in the ST programming
language.

FUNCTION ByteExtr : BYTE (* extraction byte from word *)
VAR_INPUT ... END_VAR (* as above *)
IF Upper THEN
ByteExtr := WORD_TO_BYTE (SHR (Word, 8));
ELSE
ByteExtr := WORD_TO_BYTE (Word);
END_IF;
END_FUNCTION

Example[C]2[Instruction part of Example[C.Z]in ST

FUNCTION

ByteExtr ByteExtr
WORD —{Word — BYTE %MW4 —{ Word — %MB4
BOOL —Upper TRUE — Upper

END_FUNCTION

Example[C]3.[[raphical declaration part of the function declaration in Example[C.1](left)
with an example of acall (right)

Example shows the declaration part and an example of a call for the function
ByteExtr in graphical representation. The call replaces the lower byte of flag word
4 by its upper byte.

C.2 Example of aFUNCTION_BLOCK 325

C]2 Example of a FUNCTION_BLOCK |

The function block DivwithRem calculates the result of dividing two integers and
returns both the division result and the remainder. "Division by zero" is indicated

by an outp

FUNCTION_BLOCK DivWithRem

VAR_INPUT
Dividend : INT;
Divisor INT;
END_VAR
VAR_OUTPUT RETAIN
Quotient : INT;
DivRem INT;
DivError :
END_VAR

LD 0

EQ Divisor
JMPC Error

LD Dividend
DIV Divisor
ST Quotient
MUL Divisor
ST DivRem
LD Dividend
SUB DivRem
ST DivRem
LD FALSE
ST DivError
JMP End
Error

LD 0

ST Quotient
ST DivRem
LD TRUE
ST DivError
End:

RET

END_FUNCTION_BLOCK

ut flag.

BOOL;

(* division with remainder *)

(* beginning of declaration part *)
(* input parameter *)

(* integer to be divided *)

(* integral divisor *)

(* retentive output parameters *)
(* result of the division *)

(* remainder after division *)

(* flag for division by zero *)

(* beginning of instruction part *)

(* load zero *)

(* divisor equal to zero? *)

(* catch error condition*)

(* load dividend, divisor not equal to zero *)

(* carry out division *)

(* store integral division result *)

(* multiply division result by divisor *)

(* store interim result *)

(* load dividend *)

(* subtract interim result *)

(* yields "remainder” of the division as an integer*)
(* load logical "0“ for error flag *)

(* reset error flag *)

(* ready, jump to end *)

(* handling routine for error "division by zero" *)
(* zero, since outputs are invalid in event of error *)
(* reset Result *)

(* reset Remainder *)

(* load logical "1“ for error flag *)

(* set error flag *)

(* end of FB *)

Example C]4[Example of the declaration of afunction block in IL

The FB DivwithRem in Example performs integer division with remainder on
the two input parameters Dividend and Divisor. In the case of division by zero, the
error output DivError is set and the other two outputs are set in a defined manner to
zero since they are invalid. The outputs are retentive, i.e. they are retained within
the FB instance from which DivwithRem was called.

326 C IL Examples

This example cannot be formulated as a function because there are three output
variables.

Example [C.H shows the instruction part of DivwithRem in the ST programming
language.

FUNCTION_BLOCK DivWithRem (* division with remainder *)
VAR_INPUT ... END_VAR (* as above *)
VAR_OUTPUT RETAIN ... END_VAR

IF Divisor = 0 THEN

Quotient := 0;

DivRem :=0;

DivError := TRUE;
ELSE

Quotient := Dividend / Divisor;
DivRem := Dividend - (Quotient * Divisor);
DivError := FALSE;

END_IF;

END_FUNCTION_BLOCK

Example[C5.[Instruction part of Example[C.4]in ST

Exampleshows the declaration part and an example of a call of the function
DivwithRem in graphical representation. The FB must be instantiated (Divinst)
before it can be called.

After execution of the function block, the output variables of this instance have
the following values. Divinst.Quotient = 33, Divinst.DivRem = 1 and
Divinst.DivError = FALSE. These return values are assigned to the variables
Result, Remainder and Error respectively.

C.3 Example of a PROGRAM 327

FUNCTION_BLOCK DivWithRem

INT —{Dividend Quotient [— INT
INT —Divisor DivRem [— INT
DivError — BOOL

END_FUNCTION_BLOCK

Divinst
DivWithRem
100 —Dividend Quotient [— Result
3 —Divisor DivRem |— Remainder
DivError |— Error

Example[C]6]J5raphical declaration part for Example[C.4 (top) and example of a call of
the FB instance Divinst (bottom)

C]3 Example of a PROGRAM |

The program MainProg in Example @ is not a complete programming example,
but shows ways of implementing problems and illustrates the use of variables in
POUs of type PROGRAM.

MainProg first starts a real-time clock DateTime that records the date and time
(standard FB RTC). This clock is used to find out how long an interruption in the
program has lasted (TimeDiff). The PLC system must be able to detect the
interruption (Ress_Running) and must be able to access a hardware clock with an
I/O address (ActDateTime).

328 C IL Examples

PROGRAM MainProg
VAR_INPUT

T_Start : BOOL := FALSE;
END_VAR
VAR_OUTPUT

T_Failure . BOOL := FALSE;
END_VAR

VAR_GLOBAL RETAIN
Ress_Running AT %MX255.5 : BOOL;
DateTime . RTC;
ActDateTime AT %MD2 : DT;
END_VAR
VAR_GLOBAL
EmergOff AT %IX255.0 : BOOL;

(* example of a main program *)
(* beginning of declaration part *)
(* input variables *)

(* input starting condition *)

(* output variables *)
(* output "failure” *)

(* global retentive data area *)

(* running flag for resource/PLC-CPU *)
(* programm clock: date and time *)

(* hardware clock: actual date with time *)

(* global data area *)

(* contact Emergency-Off *)

(* "running" flag *)

(* error flag *)

(* Error code, 32 bit unsigned *)

(* local variables *)

(* directly represented variables *)
(* FB instance of CErrProc *)

(* edge detection *)

(* time difference *)

(* beginning of instruction part *)

(* reset error flag *)

(* determine how long a power failure and/or an interruption *)

ProgRun : BOOL := FALSE;
Error . BOOL;
Err_Code : UDINT :=0;

END_VAR

VAR
AT %IX250.2 : BOOL,;
ErrorProc . CErrProc;
Edge : R_TRIG;
TimeDiff . TIME := t#0s;

END_VAR

LD FALSE

ST Error

(* of the CPU

LD t#0s

ST TimeDiff

LD DateTime.Q

JMPC Goon

LD ActDateTime

SUB DateTime.CDT

ST TimeDiff

Goon:

Example El?DExampIe of the declaration of a main program in IL. The FB CErrProc

lasted; Clock "DateTime" is battery-backed *)
(* zero seconds *)

(* reset *)

(* time valid = clock running *)

(* valid - nothing to do *)

(* check current time *)

(* last time before power failure *)

(* duration of power failure *)

("central error processing") must already be available. (Continued on next page)

LD Ress_Running
ST DateTime.IN
LD ActDateTime
ST DateTime.PDT

CAL DateTime

LD TimeDiff

C.3 Example of a PROGRAM

(* CPU is running *)

(* clock running if CPU is running *)
(* initial value Date/Time *)

(* initial value of clock is loaded *)
(* if there is a rising edge at IN *)

(* start real-time clock)

(* interruption duration *)

LT t#50m (* less than 50 seconds? *)
JMPC Continue (* plant still warm enough ... *)
NOT

S Error (* set error flag *)

LD 16#000300F2
ST Err_Code
Continue:

LD EmergOff

ST Edge.CLK

(* store error cause *)

(* "emergency off* pressed? *)
(* input edge detection *)

CAL Edge (* compare input with edge flag *)
LDN Edge.Q (* edge at EmergOff recognized? *)
AND T_Start (* AND start flag set *)

ANDN Error (* AND no new error *)

AND ErrProc.Ack
ST ProgRun

(* AND error cause repaired *)
(* global "running“-condition *)

(* ...real instructions, calls of FUN/FBs... *)

LD Error (* error occurred? *)

AND %IX250.2

R ProgRun (* reset global starting condition *)

LD ProgRun

JMPNC End (* in the case of error: start error handler *)

CALC ErrProc(Code := Err_Code)
LD ErrProc.Ack

(* FB with central error handling *)
(* flag: error acknowledged *)

End:

LD ProgRun (* program not running *)
ST T_Failure (* set output parameter *)
RET (* return and/or end *)

END_PROGRAM

ExampleC]7. (Continued)

(* end of program *)

329

Edge detection is also employed in this program in order to find out whether the
Emergency Off button has been pressed.

In the global data area, the variable ProgRun is declared, which is available to all
function blocks called under MainProg (as VAR _EXTERNAL). This is linked
with the starting condition provided EmergOff has not been pressed.

FB instance ErrProc can handle errors with error code Err_Code. When the error
has been corrected and acknowledged, the corresponding output is set to TRUE.

330 C IL Examples

RESOURCE CentralUnit_1 ON CPU_001
TASK Periodic (INTERVAL := time#13ms, PRIORITY := 1);
PROGRAM Applic WITH Periodic : MainProg (T_Start := %I1250.0,
T_Failure => %Q0.5);
END_RESOURCE

Example [C]8.[Resource definition with run-time program Applic for Example[C.7]

The program MainProg is provided with the properties of the periodic task
Periodic and becomes the run-time program Applic of the resource (PLC-CPU)
CentralUnit_1. This run-time program runs with highest priority (1) as a periodic
task with a maximum cycle time of 13 ms.

MainProg is called with the value of input bit %1250.0 for the input variable
T_Start and sets output bit %6Q0.5 with the value of T_Failure.

Standard Data Typeqd

This appendix summarises al the elementary data types and their features in
tabular form. Their useis explained in Chapter 3.

IEC 61131-3 defines five groups of elementary data types. Their generic data
types are indicated in brackets (see Table E.Q):

- Bitstring (ANY_BIT),
- Integer, signed and unsigned (ANY_INT),
- Real (floating-point) (ANY_REAL),
- Date, time-of-day (ANY_DATE),

- Character string, duration, derived (ANY).

The following information is given for each data type, listed in separate tables for
each group:

- Name (keyword),

- Description,

- Number of bits (data width),

- Vauerange (using of the |EC literals),
- Initial values (default values).

The data width and permissible range of the data types in Tables|D.§ and[D.g are
application-dependent.

Datatype | Description Bits | Range Initial
BOOL Boolean 1 [0,1] 0
BYTE Bit string 8 8 [0,...,16#FF] 0
WORD | Bit string 16 16 |[O,..., 164FFFF] 0
DWORD | Bit string 32 32 |[0....,16#FFFF FFFF] 0
LWORD | Bit string 64 64 [0,...,16#FFFF FFFF FFFF FFFF] 0

Table PJ1.[}Boolean and Bit String” data types

| Data type | Description | Bits | Range | Initial |

332 D Standard Data Types

SINT Short integer 8 [-128,...,+127] 0
INT Integer 16 | [-32768,...,+32767] 0
DINT Double integer 32 [[-2%..+ 2% 0
LINT Long integer 64 |[[-2%..+2%1] 0
Table pJ2.[J} Signed Integer” datatypes

Datatype | Description Bits | Range Initial
USINT Unsigned short integer 8 [O,...,+255] 0
UINT Unsigned integer 16 |[O,...,+65535] 0
UDINT | Unsigned double 32 |[0.,...,+2%-1] 0

integer

ULINT Unsigned long integer 64 |[0,...,+2%1] 0
Table E]Sﬂ Unsigned Integer” datatypes

Datatype | Description Bits | Range Initial
REAL Real humbers 32 | SeelEC 559 0.0
LREAL Long reals 64 | SeelEC 559 0.0

Table E|4|] Real Numbers’ data types (floating-point numbers)

Datatype | Description initial
DATE Date (only) 0#0001-01-01
TOD Time of day (only) tod#00:00:00
DT Date and time of day dt#0001-01-01-00:00:00

Table EISH Date and Time" data types

The full keyword TIME_OF DAY can aso be used in place of TOD, and
DATE_AND_TIME in place of DT.

Datatype | Description Initial

TIME Duration t#0s
STRING | Character string (variable length) "

Table E|6|] Duration and Character String” data types. The initial value for STRING is an
“empty” character string.

333

[E|Causes of Error|

IEC 61131-3 requires manufacturers to provide a list of responses to the following
error conditions. See also Section |j10. The responses fall into four different
categories:

1) No system response (%),

2) Warning during program creation (WarnPc),

3) Error message during program creation (ErrPc),

4) Error message and response to error at run time (ErrRun).

No.| Error cause Response

1 | Value of avariable exceeds the specified range. ErrRun

2 | Length of the initialisation list does not match the number of array ErrPc
entries.

3 | Type conversion errors ErrPc

4 | Numerical result (of a standard function) exceeds the range for the ErrRun
data type;

Division by zero (in astandard function). ErrPc
ErrRun

5 | Mixed input data types to a selection function (standard function); ErrPc
Selector (K) out of range for MUX function. ErrRun
6 | Invalid character position specified; WarnPc,
ErrRun
Result exceeds maximum string length (INSERT/CONCAT result is WarnPc
too long). ErrRun
7 | Result exceeds range for datatype TIME ErrRun

TableEl.ﬂError causes. The manufacturer supplies a table specifying the system response
to the errors described above. The entry in the “ Response” column is the appropriate time
for the response in accordance with IEC 61131-3. (Continued on next page.)

334 E Causes of Error
8 | AnFB instance used as an input parameter has no parameter values. ErrPc
9 |[A VAR_IN_OUT parameter has no value. ErrPc
10 | Zero or more than oneinitial stepsin SFC network; ErrPc
User program attempts to modify step state or time. ErrPc
11 | Simultaneously true, non-prioritised transitions in a selection WarnPc,
divergence. ErrPc
12 | Side effectsin evauation of transition conditions. ErrPc
13 | Action control contention error. WarnPc,
ErrRun
14 | Unsafe or unreachable SFC. ErrPc
15 | Datatype conflictin VAR_ACCESS. ErrPc
16 | Tasks require too many processor resources; ErrPc
Execution deadline not met; ErrPc
Other task scheduling conflicts. WarnP,
ErrRun
17 | Numerical result exceeds range for datatype (IL). WarnPc,
ErrRun
18 | Current result (CR) and operand type do not match (IL). ErrPc
19 | Division by zero (ST); WarnPc,
ErrPc,ErrRun
Invalid data type for operation (ST). ErrPc
20 | Return from function without value assigned (ST). ErrPc
21 | Iteration fails to terminate (ST). \WarnPc,ErrPc,
ErrRun
22 | Same identifier used as connector label and element name (LD / ErrPc
FBD).
23 | Uninitialised feedback variable ErrPc

Table E]1. (Continued)

This table is intended as a guide. There are other possible errors which are not
included in the IEC table. It should therefore be extended by every manufacturer
as appropriate.

Fll mplementation-Dependent Parameter s|

Table[F.J]lists the implementation-dependent parameters defined by 1EC 61131-3.
See also Section[7]11.

No.| | mplementation-dependent parameters

[En

Error handling procedures which are supported by the manufacturer.

2 | Information about use of the following national characters and/or their substitutes:
£ instead of #, if # occupied by national character,

Fitting currency symbol instead of $, if $ occupied by national character,

!instead of |, if | occupied by nationa character.

Maximum length of identifiers.

M aximum comment length (without leading or trailing brackets).

Range of values of duration (e.g. 0<=Hours<24; 0<=Min<60).

[e22 (20 B> OV}

Range of values for variables of datatype TIME (e.g. 0<=TimeVar<365 Days).
Precision of representation of secondsin datatypes TIME_OF DAY and
DATE_AND_TIME.

7 | Maximum:

- number of elementsin an array (number of array subscripts),

- array size (number of bytes),

- number of structure elements,

- structure size (number of bytes),

- number of variables per declaration that can be declared with the same data type
(separated by commas).

8 | Maximum number of enumerated values (data type ENUM).

Table E|1D mplementation-dependent parameters which every manufacturer of an 1EC
61131-3 system must describe. The division into individua groups relates to individua
sections in the standard. If no concrete figures are required, the manufacturer can add an
informal description. (Continued on next page.)

336

F Implementation-Dependent Parameters

Default maximum length of STRING variables.
Maximum allowed length of STRING variables.

10

Maximum number of hierarchical levelsfor directly represented variables
(e.g. %6QX1.1.1.2...).
Logical or physical mapping (symbols %l X.... onto the real hardware).

11

Maximum number of subscripts for access to an array element.
Maximum range of subscript values.
Maximum number of structure levels (depth of sub-structuring).

12

Initialisation of system inputs (%I X...) at system start time.

13

Information to determine execution times of program organisation units (POU) (no
details are given in |IEC 61131-3).

14

Method of function representation: textual or graphic (symbols, such as“+”, or
names, such as“ADD").

15

M aximum number of function specifications (if limited).

16

Maximum number of inputs of extensible functions.

17

Effects of type conversions on accuracy (REAL_TO INT, ..)).

18

Accuracy of functions of one variable (LOG, SIN, ...).
Implementation of arithmetic (overloaded) functions.

19

Maximum number of function block specifications and instantiations (if limited).

20

Range of parameter PV (end value of counter function blocks).

21

System reaction to a change of the input PT (end value of timer function blocks)
during operation .

22

Number and length of SEND inputs and RCV outputs specified in IEC 61131-5.

23

Program size limitations (executabl e code)

24

Timing and portability effects of execution control elements (SFC).
Functional (and/or informal) description of SFC implementation.

25

Precision of step elapsed time.
Maximum number of steps per SFC network and per POU.

26

M aximum number of transitions per SFC network and per POU.

27

Action control mechanism (if available).

28

M aximum number of action blocks per step.

29

Graphic indication of step state (e.g. by inverse representation or additional
characters). Thisis not prescribed by the standard.

(Minimum) transition clearing time (caused by PLC cycle time).
Maximum number of predecessor and successor stepsin diverge/converge
constructs.

30

Contents of RESOURCE libraries. Every processing unit (e.g. processor type)
receives a description of all functions (standard functions, standard FBs, data types,
....) that can be processed by this resource.

Table F]1. (Continued on next page)

F Implementation-Dependent Parameters 337

31 | Maximum number of tasks/ resource.
Task interval resolution (time between calls for periodic tasks);
Type of task priority control (pre-emptive or hon-pre-emptive scheduling).

32 | Maximum length of expressions (ST) (humber of operands, operators).
Partial evaluation of Boolean expressions (for avoidance of unwanted side-effects).

33 | Maximum length of statements (ST) (IF; CASE; FOR; ...); restrictions.

34 | Maximum number of CASE selections (ST).

35 | Vaue of control variable upon termination of FOR loop.

36 | Kind of graphic representation (semigraphic or graphic) for graphic programming
languages.
Restrictions on network topology (LD/FBD)

37 | Evauation order of feedback loops.

38 | Description of the execution order of networks.

TableF]L. (Continued)

There are a large number of other parameters that need to be considered when
implementing a programming system compliant with |EC 61131-3.
Table[F.Z] gives a subjective selection of these parameters.

No.| Implementation-dependent parameters

1 | Extent of syntax and semantic checking provided by the textual and graphica
editors (during input).

2 | Free placement of graphic elements in the case of editors with line updating
("elastic band") or automatic placement according to syntax rules.

3 | Declaration and use of Directly Represented Variables (DRVS):

- In the declaration the symbolic name is always used. In the code part either the
symbol alone or both may be used (symbol; direct physical address). Or

- DRVs may also be declared without symbolic names (use of the direct physical
address only). Or

- The programming system declares DRV s implicitly.

4 | Sequence order of VAR_*..VAR_END blocks as well as multiple use of blocks
with the same name (variable type).

5 | Function calling mechanisms implemented in ST (with/without formal parameters).

6 | Extent of implementation of the EN/ENO parametersin LD and FBD, and possible
effects on IL/ST program sources.

Table E|2.|:bther implementation-dependent parameters (not part of IEC 61131-3)
(Continued on next page)

338 F Implementation-Dependent Parameters

7 | Possibility of passing user-defined structures (TYPE) as function and FB input
parameters (not defined in the standard at present).

8 | Global and POU-wide publication of user-defined data types (TYPE...END_TYPE)
(not defined in the standard at present).

9 | Extent of data area checking during program creation and at run time.

10 | Graphical representation of qualifiersin variable declarations.

11 | Multiple instantiation of the real time clock RTC or use of a single instance for all
cals.

12 | Restrictions on use of complex data types (function type also permitted for type
"string" or user-defined types, ...?).

13 | Algorithm for the evaluation of LD/FBD networks (see Sections /3.4 and |Zl4.1).

14 | Aids for comprehensibility of cross-compiled programs (if implemented).

Table F]2. (Continued)

IEC 61131-3 expressly allows functionality beyond the standard. However, they
must be described. Tablegiv&s some examples.

No.| Extensions

1 | Extending range checking to more data types than only integer (ANY_INT),
eg. ANY NUM.

Accepting FB instances as array variables.

Permitting FB instances in structures.

Allowing overloading for user-defined functions, function blocks and programs.

Time when the step width is calculated in the case of FOR statements.

[e22 (620 B> [OSA\)

Possible use of pre-processor statements for literals, macros, conditional compiling,
Include statements (for input of files with FB interface information/prototypes, with
thelist of directly represented variables or EXTERNAL declarations employed, ...).

7 | Additional declaration facility in FBs for creating dynamic (non-static) variables
(eg. VAR DYN...END_VAR), to reduce storage space requirementsin the PLC.

8 | Use of different memory modelsin the PLC (Small; Compact; Large,...)

Table E]S.[Possi ble extensions (not part of IEC 61131-3)

GlIL Syntax Example |

Many of the examples given in this book are formulated in Instruction List (IL).
This programming language is widely used and is supported by most programming
systems. By including data types previously only found in high-level languages,
such as arrays or structures, the IEC 61131-3 Instruction List language opens up
new possibilities compared with conventional IL.

The IL syntax descriptions in this appendix are presented in simplified form in
syntax diagrams.

Syntax diagrams explain the permissible use of delimiters, keywords, literals and
names in areadily comprehensible format. They can easily be put into textual form
for the development of compilers and define the formal structure of a program-
ming language (syntax of a language). The reader can use the diagrams for
reference.

The syntax descriptions in this appendix go beyond IEC 61131-3 because, in
addition to the pure syntax definitions, they aso include semantic conditions (con-
sistent use of the current result, use of function parameters, etc.). IEC 61131-3
only offers an informal description of this.

The rules are outlined in Section The use of the diagrams is explained in
Section [5.2 by means of an example.

340 G IL Syntax Example

G[L Syntax Diagramsfor IL

[f a node in the syntax diagram has further subdivisions (sub-diagram), its name
appearsin italics. Keywords or terminal symbols which are not further subdivided
appear in standard type|

IL instruction sequence:

» »{Load instruction Conlnst

Label Unconditional FB call

Unconditional jump

Unconditional return

Conlnst:
—>= > S > ad
- < ~ - < ~
Assignment
I nstWoutBrck " SRingruction }F——
¥ Conditional FB call _}—]
N Conditional jump }——
“—{ Conditional return |
Label:

—»{(label name 9 1 g P

Figure Ell.[lsyntax diagrams of an IL instruction sequence with the sub-elements
"conditional instruction” and "label".

G.1 Syntax Diagrams for IL 341

An IL instruction sequence begins optionally with a (jump) label. Thisis followed
either by a Load instruction followed by one or more conditional instructions
Coninst, an unconditional instruction with FB call, a jump or a return (see syntax
diagram in Figure[G.1).

The conditional instruction begins with a sequence of instructions with and
without brackets and/or function calls. This is followed by a series of (S/R)
assignments, conditional calls or jumps.

The label consists of alabel identifier, followed by a colon. It either immediately
precedes the first instruction of the sequence or is followed by EOLSs (end of line).
The latter is an extension of IEC 61131-3, but it is accepted by some programming
systems because it improves the optical structuring of instruction sequences.

EOLs represent the end of a line. An EOL can be directly preceded by one
comment field.

The syntax diagrams for instructions, calls and jumps are given below.

I nstWoutBrck:
—»{Operator —»{(Operand —PEOLs P

Figure G]2.[yntax diagram of an instruction without brackets

An instruction without brackets (Figure) consists of an IL operator with one
operand and the end-of-line EOLs.

The syntax diagrams in Figure show the structure of an instruction with
brackets. This type of instruction begins with an instruction consisting of an opera-
tor followed by an opening bracket and an operand. This can be followed by any
number of instructions InstinBck inside the brackets, which are concluded with a
closing bracket and EOLs.

These inner instructions can themselves contain brackets (nesting), as well as
FUN calls and assignments.

As Figure@ shows, a function call consists of the function name together with a
number of operands separated by commas as actual parameters of the function.

342 G IL Syntax Example

InstWithBrck:

—»{Operator H{(}H{(Operand JEOLs H¥{InstinBek H{()

InstinBck:

1 > >

2 < \

SRingruction JJ

Figure G]3[Byntax diagrams of an instruction with brackets

FUN call:

—»{FUN name } >

Operand

Figure Gl4[F)ntax diagram for afunction call

Figure shows the syntax diagrams for conditional and unconditional calls of a
function block. The unconditional call begins with CAL, the conditional call with
CALC or CALCN. This is followed by the name of the FB instance, and the FB
parameters in brackets.

The assignment of an actual parameter to a formal parameter is represented by
the symbol ":=". Such assignments are required for every parameter and are
separated by commas.

G.1 Syntax Diagrams for IL 343

Unconditional FB call:

CAL »{FB name Y FB parameter }®EOLs

Conditional FB call:

FB name HM{FB parameter —®EOLs P
CALCN

FB parameter:

Figure [G]5.[Byntax diagrams for a function block call

Unconditional jump:

JMP P{label name }PEOLs P

Conditional jump:

label name HEOLS H
JMPCN

Figure EIG.[Q/ntax diagrams for conditional and unconditional jumps

For jumps, the label name is specified after the jump operator JIMP (unconditional)
or IMPC/IMPCN (conditional) (Figure[G.6).

344 G IL Syntax Example

Unconditional return:

—RET

Conditional return:

(RETC
RETCN

Figure[G]7.[Byntax diagrams for conditional and unconditional return

The returns shown in Figure have no operands or parameters, but they can
have a comment, like any IL instruction.

Load instruction:

—> LD} »Operand —PEOLs

LDN

Figure Gl [Byntax diagram for the Load instruction

The Load instruction in Figure has a single (negatable) operand. It cannot be
combined with a bracket or used inside a bracket.

Assignment:
—> (ST} »{Operand PEOLs P
STN

Figure [Glo[yntax diagram for assignment

Assignments (Figure consist of the operator ST or STN and the specification
of the operand to be stored.

G.1 Syntax Diagrams for IL 345

S/R instruction:

—’W »s) (»Operand MEOLs P

Figure E]lo.[b/ntax diagram for the /R instruction

wn

An SR instruction (Figure[G.10) consists of the IL operators S or R and one

operand.
NonExt. Operator:j—b
Extens. Operator

Figure [G]11.[[xtensible and non-extensible operators

Operator:

The operators represented in Figure perform logic operations, and are not
used for loading or storage. A distinction is made between extensible and non-ex-
tensible operators, as shown below.

Extens. Operator:

>
prd
W)

ANDN

Ro

il

ORN
O
XORN
D
MUL

>

e

O

Figure E]12.|]Extensi ble operators: bitwise Boolean operations, addition and multiplication

346 G IL Syntax Example

Figure shows the extensible operators. They can have more than two input
parameters. The bitwise Boolean operators (standard functions) can also be used
with inversion.

NonExt. Operator:

G 7 >
G
L
L

T

U
DIV

Figure E|13.[Non-@<tensi ble operators: comparison, subtraction, division

The non-extensible operators in Figure have exactly two input parameters
(including the current result CR).

EOLs:
[<
>

>

Figure E|14.|]:3/ntax diagram for the EOL (end of line) of an IL instruction with comment

An L lineisconcluded with asingle EOL character (e.g. carriage return/ line
feed) or acomment followed by EOL (Figure [G.14). These elements can occur
once or any number of times in sequence.

A comment begins with (*, ends with *) and contains any number of apha-
numeric charactersin between without EOL. Comments cannot be nested.

G.2 IL Example from Syntax Diagrams 347

ActPar: Operand:

Operand

label name:

FUN name:

FB name:

FormPar: Varld:

Varld IDENTIFIER

Figure EIlS.BDperands parameters and other elements are represented by identifiers and
literals.

Figure shows how parameters, operands and other elements are represented
using IDENTIFIERs and LITERALS.

For simplicity the syntax diagrams of identifiers and literals are not shown here.
The basic principles of their representation are explained in Section E.Z.

@2 IL Examplefrom Syntax Diagramsl

The IL syntax diagrams shown on the previous pages will now be used to produce
an IL example. This shows how sample programs are constructed from syntax
diagrams and vice versa, enabling IL examplesto be checked for correctness.

Beginning of IL sequence

0001 SequenceOne: (* label *)

0002 (* simple logic operation with jump *)
0003 LD Varl (* load instruction *)

0004 (* beginning of conditional instructions *)
0005 ANDN Var2 (* instruction without bracket *)

0006 ORN (Var3 (* instruction with bracket *)

0007 AND Var4

0008) (* end of bracketing *)

0009 AND Varb

0010 ST Var6 (* assignment *)

0011 S Var7 (* S/R instruction *)

0012 RETC (* conditional return *)

0013 (* end of conditional instructions *)
0014 (* end of IL sequence *)

Example@.lDIL example. The comments refer to the corresponding syntax diagram. The
line numbers on the |eft are used for referencein Table[G.1]

348 G IL Syntax Example

To show how the IL_example in Example [G.J] can be built up from the syntax
diagramsin Section [5.1] Table [5.1]shows the relevant syntax diagrams for each IL
line.

Linein Ex. Syntax diagram Figures
0001-0014 | IL instruction sequence FigurelG.
0001-0002 | (Jump) label FigurelG.1
0003-0004 | Load instruction FigurelG.

0005 | Instruction without bracket FigurelG.
0005 | Extensible operator ANDN FigurelG.1.
0006-0008 | Instruction with bracket FigurelG.3|
0006,0007 | Extensible operators ORN, AND Figure]G.13
0007,0009 | Instruction without bracket FigurelG.
0007,0009 | Extensible operator AND FigurelG.1.
0010 | Assignment FigurelG.
0011 | S/Rinstruction FigurelG. 1
0012-0014 | Conditional return FigurelG.7

Table Ell.ﬂ';yntax diagrams to be used for each line of the IL sequencein Example

This example shows how a concrete IL program is built up using syntax diagrams.
In the syntax diagram for an IL instruction sequence (Figure), first the label
with name, colon and comments is inserted, followed by the first (Load)
instruction.

The "conditional instructions® part is made up of two instructions, the first of
which with a bracket containing further instructions. After the conditional
instructions, the sequence is terminated with assignments and return.

In this way it is possible to create valid IL sequences from the individual syntax
diagrams. Conversely, the relevant syntax diagrams for each IL line can be found
in order to determine whether a program section is syntactically correct.

H]Reserved K eywords and Delimiters

IEC 61131-3 expressly permits the use of trandation tables for adapting keywords
and delimitersto national character sets.

H]1 Reserved K eywords|

Table lists all the reserved keywords for programming languages of
IEC 61131-3 in alphabetical order. They must not be employed as names for user-
defined elements.

A | ABS ACOS
ACTION ADD
AND ANDN
ANY ANY_BIT
ANY_DATE ANY_INT
ANY_NUM ANY_REAL
ARRAY ASIN
AT ATAN

B |BOOL BY
BYTE

TableR]1[Reserved keywords of IEC 61131-3 (continued on next page)

350 H Reserved Keywords and Delimiters

Cc |cAL CALC
CALCN CASE
cD cDT
CLK CONCAT
CONFIGURATION CONSTANT
cos CTD
cTu CTUD
Ccu cv

D |D DATE
DATE_AND_TIME DELETE
DINT DIV
DO DS
DT DWORD

E |ELSE ELSIF
END_ACTION END_CASE
END_CONFIGURATION END_FOR

END_FUNCTION

END_FUNCTION_BLOCK

END_IF END_PROGRAM
END_REPEAT END_RESOURCE
END_STEP END_STRUCT
END_TRANSITION END_TYPE
END_VAR END_WHILE
EN ENO
EQ ET
EXIT EXP
EXPT

F |FALSE F_EDGE
F TRIG FIND
FOR FROM
FUNCTION FUNCTION_BLOCK

G |GE GT

| IF IN
INITIAL_STEP INSERT
INT INTERVAL

Table Ell. (Continued on next page)

H.1 Reserved Keywords

J IMP IJMPC
JMPCN

L L LD
LDN LE
LEFT LEN
LIMIT LINT
LN LOG
LREAL LT
LWORD

M MAX MID
MIN MOD
MOVE MUL
MUX

N N NE
NEG NOT

o) OF ON
OR ORN

P P PRIORITY
PROGRAM PT
PV

Q Q Q1
QuU QD

R R R1
R_TRIG READ_ONLY
READ_WRITE REAL
RELEASE REPEAT
REPLACE RESOURCE
RET RETAIN
RETC RETCN
RETURN RIGHT
ROL ROR
RS RTC
R_EDGE

TableEIl. (Continued on next page)

351

352 H Reserved Keywords and Delimiters

s |s S1
SD SEL
SEMA SHL
SHR SIN
SINGLE SINT
SL SORT
SR ST
STEP STN
STRING STRUCT
SUB

T |[TAN TASK
THEN TIME
TIME_OF DAY TO
TOD TOF
TON TP
TRANSITION TRUE
TYPE

U |UDINT UINT
ULINT UNTIL
USINT VAR

V | VAR ACCESS VAR_EXTERNAL
VAR_GLOBAL VAR_INPUT
VAR_IN_OUT VAR _OUTPUT

W | WHILE WITH
WORD

X | XOR XORN

Table f]1. (Continued)

H.2 Delimiters 353

H[R Delimiters

E}elimiters are "symbols' in the syntax of programming languages and have
different meanings depending on where they are used. For example, round
brackets can be used to indicate the beginning and end of a list of actual
parameters in a function call, or they can be used together with the asterisk to
frame comments.

All the delimiters and their combinations are listed in Table[H.2 together with
their possible meanings.

Characters for the graphical representation of lines are not included here.

Deimiter M eaning, explanations

Space Can be inserted anywhere - except within keywords,
literds, identifiers, directly represented variables or
combinations of delimiters (such as"(*" or "*)").

IEC 61131-3 does not specify any rules about tabulators
(TABs). They are usually treated as spaces.

End of line (EOL) Permissible at the end of alinein IL. In ST aso
permissible within statements. Not permitted in IL
comments. EOL (end of line) is normally
implemented by CR& LF (Carriage Return & Line

Feed).
Begin comment (* | Beginning of acomment (nesting not allowed)
End comment *) | End of acomment
Plus + | 1. Leading sign of adecimal literal, aso in the exponent

of ared (floating-point) literal
2. Addition operator in expressions

=

Leading sign of adecimal literal, also in the exponent
of ared (floating-point) literal

Subtraction operator in expressions

Negation operator in expressions

Y ear-month-day separator in time literals

Minus -

Based number separator in literals
Time literal separator

Number sign #
(‘hash)

NP~ N

TableEIZ.[belimiters of IEC 61131-3 (continued on next page)

354 H Reserved Keywords and Delimiters

Delimiter

M eaning, explanations

Point

1. Integer/fraction separator

2. Separator in the hierarchical addresses of directly
represented and symbolic variables

3. Separator between components of a data structure

(for access)
4. Separator for components of an FB instance (for
access)
e E | Leading character for exponents of real (floating-point)
literals
Quotation mark ' | Beginning and end of character strings
Dollar sign $ | Beginning of special characters within character strings
Prefix timeliterals t#, T# | Charactersintroducing time literals. Combinations of
d#, D# lower-case and upper-case | etters are also
d,D permissible..
h,H
m, M
S S
ms, MS
datef, DATE#
time#, TIME#
time_of_day#
TIME_OF _DAY#
tod#, TOD#
date_and_time#
DATE_AND_TIME#
dt#, DT#
Colon . | Separator for:
1. Timewithintimeliterals
2. Datatype specification in variable declarations
3. Datatype name specification
4. Step names
5. PROGRAM...WITH...
6. Function name/data type
7. Access path: Name/type
8. Jump label before next statement
9. Network label before next statement
Assignment := | 1. Operator for initial value assignment
2. Input connection operator (assignment of actual
parameter to formal parameter in POU-call)
3. Assignment operator

Table H]2. (Continued on next page)

H.2 Delimiters 355

Delimiter

M eaning, explanations

Round brackets

)

Beginning and end of:

1. Enumeration list

2. Initia valuelist, dso: multipleinitial values (with
repetition number)

Range specification

Operator in IL (computation level)

Parameter list in POU call

. Sub-expression hierarchy

o0 AW

Square brackets

[

Beginning and end of:
1. Array subscript (access to an array element)
2. Character string length (in declaration)

Comma

Separator for:

Enumeration list

Initial valuelist

Array subscripts (multidimensional)

Variable names (in the case of multiple declarations
with the same data type)

Parameter list in POU call

Operand listin IL

. CASE valuelist

MwpNE

Nowo

Semicolon

End of:

1. Définition of a(data) type
2. Declaration (e.g. variables)
3. ST statement

Two points

Separator for:
1. Range specification
2. CASE range

Percent

Leading character for hierarchical addresses of directly
represented and symbolic variable

Assignment2

Output connection operator (assignment of formal
parameters to actual parametersin a PROGRAM call)

Comparison

>= <=,

Relational operators in expressions

Exponent

Operator in expressions

Multiplication

Multiplication operator in expressions

Division

Division operator in expressions

Ampersand

AND operator in expressions

TableH]2. (Continued)

356 H Reserved Keywords and Delimiters

I]Planned Amendmentsto the Standard |

This edition incorporates all the corrections contained in the current Corrigendum.
As mentioned at the beginning, this is a document which corrects errors and
clarifies pointsin the standard.

The Amendments, on the other hand, describe extensions and significant
changes to the standard. As these have not yet been finalised at the time of writing
(2000), only the most important points are summarised here.

- Introduction of typed literals for Boolean and numerical constants. A constant
can be identified by a prefix <elementary data type>#<data vaue>.
Example: SINT#20 or BOOL#0

- Use of the 1SO 10646 character code (1 / 2 bytes long) for character strings.
This also enables national characterslike , U, 6,... to be represented.

- Introduction of the variable type VAR _TEMP ... END_VAR. Variables de-
clared with this construct are initialised every time an FB is called and do not
retain their value between calls (corresponds to the VAR declaration for
functions).

- Setsof variables are given the attributes RETAIN or NON_RETAIN. If neither
of these attributes is specified, the "implementation-dependent parameters’
decide whether these variables are to be retentive or not.

- Physical addresses can be partially specified at the programming stage by using
the wild card character "*", for example: %Q*. The final addressis specified at
the configuration stage.

- Theinitia values of call parameters and local variables for a function block
instance can be defined when the instance is declared. This enables different
instances of the same block type to have different initial values.

- Actua parameters are assigned to forma parameters with ":=" as before.
Output parameter values are assigned with "=>".
Example:

CAL fb_instance (input_parameter:= 2, return_value => call_variable).

358 | Planned Amendments to the Standard

Introduction of the generic data type ANY_MAGNITUDE to include the data
types ANY_NUM and TIME. ANY_STRING describes the two types STRING
(character length 1 byte) and WSTRING (character length 2 bytes). ANY is
subdivided into ANY_DERIVED and ANY_ELEMENTARY.

DlGlossary]

In this chapter important terms and abbreviations employed in the book are listed
in aphabetical order and explained in detail .
Terms, which are defined by |IEC 61131 (parts 1 and 3), are marked "|EC".

Action IEC

Action block IEC

Action control IEC

Actual parameter
Allocation table

Array
Block

CIM

Cold restart IEC

Boolean variable or a series of statements which can
be accessed viaan action block (in SFC).

Activation description of actions (in SFC) using an
associated control structure.

Control unit for every action in SFC which is
supplied with the input condition for activating the
assigned action by means of one or more action
blocks; also: action control function block

Actual value for an input variable (formal
parameter) of a POU; also: current address

List which contains the assignment of all symbols or
symbolic variables to PLC addresses.

Sequence of elements of the same data type.

(Sub-) programming unit, from which PLC-pro-
grams are built. Blocks can often be |oaded inde-
pendently from each other into the PLC, see also
POU.

Abbreviation for Computer Integrated Manu-
facturing

Restart of the PLC-system and its application pro-
gram, whereby all variables and memory areas (such
asinternal registers, timers, counters) are (newly)
initialised with predefined values. This process can
occur automatically after specific events (e.g. after a
power failure) or also manually by the user (e.g.
Reset button). Also: new start.

360 JGlossary

Comment

Configuration
CPU

CR
Cross-compilation

Current result
Cycle

Cycletime

Data block

Data type
Declaration

Declaration block

Derived data type

Directly represented

variable
Edge

Elementary datatype

Enumeration

Extension of functions

IEC

IEC

IEC

IEC

IEC

IEC

IEC

IEC

Text written between parentheses and asterisks used
to explain the program (cannot be nested!). Thisis
not interpreted by the programming system.

Language element CONFIGURATION which
correspondsto a PLC system

Abbreviation for Central Processing Unit (e.g. of a
PLC)

Abbreviation for Current Result

Conversion of the representation of a POU from one
programming language to another, typically between
ladder and function block diagram, but also between
textual and graphical languages; also: cross-
compiling

Interim result in IL of any data type

A single run of the (periodically called) application
program.

The time which an application program requires for
one cycle; also: scan time.

Shared data area, which is accessible throughout a
program, see also block. In |IEC 61131-3, thereisno
direct analogy. They are replaced here by global
(non-local), structured data areas and FB instance
data areas.

Defines bit length and range properties of avariable.

Definition of variables and FB instances takes place
in adeclaration block with information about the
data name, the data type or the FB type aswell as
appropriateinitial values, range specification and
array attributes (data template declaration).

The definition or programming of POUs is aso
designated as a declaration since their interfaces are
made known to the programming system here.

Combination of declarations of one variable type at
the beginning of the POU.

With the aid of atype definition, a user-specific data
typeis created. Its elements are elementary data
types or derived data types.

Variable without further name which corresponds to
ahierarchical address.

The 0- 1 transition of a Boolean variable is known
as“rising edge’. Accordingly, the 1- 0 transitionis
known as “faling” edge.

A standard data type predefined by IEC 61131-3.
Specid data type for the definition of integer values.
A function can have avariable number of inputs.

FB
FB instance
FB type

FBD
Formal parameter

Function
Function block
Function Block Diagram

Generic data type

Hierarchical address

Hot restart

1/0

IL
Indirect FB call

Initial value

Instance

Instruction List

Ladder Diagram

IEC
IEC
IEC

IEC

IEC
IEC
IEC

IEC

IEC

IEC

IEC

IEC

IEC

IEC

JGlossary 361

Abbreviation for function block
see instance

Name of afunction block with call and return inter-
face

Abbreviation for Function Block Diagram

Name or placeholder of an input variable (all POUs)
or output variable (function block and program).

A POU of type FUNCTION
A POU of type FUNCTION_BLOCK

Function Block Diagram (FBD) is a programming
language used to describe networks with Boolean,
arithmetic and similar elements.

Combination of elementary data types into groups
using the prefix ‘ANY’, in order to describe
overloaded functions.

Physical slot address of 1/0 modules of aPLC
system (see also 1/0).

Program restart at the place in the program where a
power failure occurred. All battery-backed data areas
aswell as the application program context will be
restored and the program can go on running, asiif
there had been no power failure. In contrast to warm
restart, the interruption duration must be within a
given value range depending on the process. For this
purpose, the PLC system must have a separately se-
cured real-time clock in order to be able to compute
the interruption duration.

The addresses of input and output modules
belonging to a PLC systemwith hierarchical
addresses.

Abbreviation for Instruction List

Call of an FB instance whose name is passed to the
POU asaVAR_IN_OUT parameter.

Vaue of avariable, which will be assigned during
initialisation, i.e. at system start-up time; also: star-
ting count.

Structured data set of an FB obtained by declaration
of afunction block indicating the FB type.

Instruction List (IL)) is amuch used Assembler-like
programming language for PLC-systems. Sometimes
itisalso caled Statement List Language (STL).
Ladder Diagram (LD) is a programming language to
describe networks with Boolean and el ectromechani-
cal elements, such as contacts and coils, working
together concurrently.

362 JGlossary

LD
Multi-element variable

New start
Overloading of functions

PC

PLC

PL C programming
computer

PL C programming system

PLC system

POU
Program
Program organisation unit

Programming computer
Programming system
Range specification

Recursion

Resour ce

Retentive data

Rever se compiling

Run-time program

IEC
IEC

IEC

IEC
IEC
IEC

IEC

IEC

Abbreviation for Ladder Diagram

Variable of type array or structure, which is put
together from several different data types.

see Cold restart

The capability of an operation or function to operate
with different input data types (but each of the same
type). By this means several function classes are
available under the same name.

Abbreviation for persona computer.

Also Abbreviation for Programmable Controllers as
employed in IEC 61131

Abbreviation for Programmable Logic Controller
Unit consisting of computer, programming system
and other peripherals for programming the PLC.

Set of programs which are necessary for program-
ming a PLC system: program creation and compi-
lation, transfer into the PLC aswell as program test
and commissioning functions.

All hardware parts required for executing aPLC
program.

Abbreviation for program organisation unit
A POU of type PROGRAM

A block of type function, function block or program,
from which application programs are built.

see PLC programming computer

see PLC programming system

Specification of a permissible range of values for a

data type or avariable.

Illegal in IEC 61131-3. It means:

a) the declaration of an FB using its own name or
FB type,

b) mutual FB calls.

Recursion is considered an error and must be

recognised while programming and/or at run time.

Language element RESOURCE which corresponds

to acentral processing unit of the PLC system.

Ability of aPLC to protect specific process data
against loss during a power failure. The keyword
RETAIN isused for thisin IEC 61131-3.

Recovery of the POU source back from the PLC
memory.

Program of POU type PROGRAM as an executable
unit (by association with atask).

Semantics

Sequential Function Chart

SFC

Single-element variable

ST

Standard function blocks

Standard functions

Std. FB
Std. FUN

Step

Structured Text

Symboalic variable
Syntax

Task

Transition

Type definition

Variable

Warm reboot

IEC

IEC
IEC
IEC
IEC

IEC

IEC

IEC

IEC

IEC
IEC

JGlossary 363

Meaning of language elements of a programming
language as well as their description and their
application.

Sequential Function Chart (SFC) is a programming
language used to describe sequentia and parallel
control sequences with time and event control.
Abbreviation for Sequential Function Chart
Variable which is based on a single data type.
Abbreviation for Structured Text

Set of function blocks predefined by IEC 61131-3
for implementation of typical PLC requirements.
Set of functions predefined by IEC 61131-3 for the
implementation of typical PLC requirements.
Abbreviation for standard function block
Abbreviation for standard function

State element of an SFC program in which state-

ments of the action corresponding to this step can be
started.

Structured Text is a programming language used to
describe algorithms and control tasks by means of a
modern high programming language similar to
PASCAL.

Variable with name (identifier) to which ahierar-
chical addressis assigned.

Structure and interaction of elements of a pro-
gramming language.

Definition of run-time properties of programs.
Element of an SFC program for movement from one

SFC step to the next by evaluating the transition
condition.

Definition of a user-specific data type based on
already available data types.

Name of a data memory area which accepts values
defined by the corresponding data type and by
information in the variable declaration.

Term used for either hot restart or warmrestart.

364 JGlossary

Warmrestart (at the
beginning of the program)

IEC

Program restart similar to hot restart with the
difference that the program starts again at the
beginning, if the interruption duration exceeded the
maximum time period allowed. The user program
can recognise this situation by means of a
corresponding status flag and can accordingly pre-
set specific data.

K]Bibliography|

Books concerning PLC programming:

[JohnTiegel-99]

[Lewis-98]

[Bonfatti]

K.-H. John and M.Tiegelkamp

»SPS-Programmierung mit |EC 61131-3", Springer Berlin
Heidelberg New Y ork, 1999, 3 Ed. (German),

ISBN 3-540-66445-9

R. W. Lewis

»Programming industrial control systems using

IEC 1131-3“, IEE Control Engineering, The Institution of
Electrical Engineers, 1998,

ISBN 0-852-96950-3

Dr. Monari, Prof. Bonfatti and Dr. Sampieri

»1EC 1131-3 Programming Methodol ogy; Software
engineering methods for industrial automated systems®,
ISBN 2-9511585-0-5

Standards concerning PLC programming:

[IEC EN 61131-3 B1] Committee Draft - IEC 61131-3, 2™ Ed.

[IEC AMEND-98]

[IEC CORR-97]

»Programmable controllers - programming languages",
|EC 65B/WG7/TF3(PT3E2ACD)1
Committee Draft, Houston, 10/1998

|EC SC65B/WG7/TF3, Proposalsto 1EC 1131-3:
»Draft Amendmentsto IEC 1131-3,
Draft Version, Venedig, Italy, 8/98

|EC SC65B/WGT7/TF3, correction of 1EC 1131-3:
»Revised Technical Corrigendum to IEC 1131-3",
Draft Version, Y okohama, Japan, 5/97

366 K Bibliography

[IEC TR2-97]

[IEC 61499-98]

|[EC SC65B/WGT7/TF3, Type 2 Technical Report
» Proposed Extensionsto |EC 1131-3",
Committee Draft, Paris, France, 9/96

Version: 05/1997

IEC TC65/WG6(PT1CD+PT2CD)

» Function blocks for industrial -process measurement and
control systems",

Committee Draft, Parts 1+2, 1998

Papers concerning |EC 61131-3

[Frost & Sullivan-95] "World programmable logic controller markets: increasing

[OMAC-94]

[PLCopen-96]

[PLCopen-00]

[Wal-99]

functionality promises continued growth"
Study on the PLC market 1993-2000
Frost & Sullivan

»Requirements of Open, Modular Architecture Controllers
for Applications in the Automotive Industry”

Version 1.1

13.12.94; Chryder; Ford; GM

PL Copen / Michael Babb
»1EC 1131-3: A standard programming resource for PLCs’
in: Control Engineering, 2/96

»PLCopening“ News of PLCopen, quarterly newspaper
Y ears 1992-00
PL Copen, Zatbommel, The Netherlands

Eelco van der Wal
“ |EC 1131-3: a standard programming resource’
ISA Show, 06.07.1999

K Bibliography

I mportant references
[PLCopen Europe] Eelco van der Wal
Postbus 2015
5300 CA zatbommel, The Netherlands

Tel: +31-418-541139
Fax: +31-418-516336

[PLCopenNorth Americal
Jeremy Pollard
8 Vine Crescent,
Barrie, Ontario L4N 2B3
CANADA

Tel: 705-739-7155
Fax: 705-739-7157

Email: |plcopenna@tsuonline.com|

[PLCopenNorth Japan]
Y oshio Y amaguchi
3F, 3-61-8 Wada
Suginami - Ku
Tokyo 166-0012
Japan

Tel: +81-3-3315-0194
Fax :+81-3-3315-0192
Email: [pl copen-japan@mugen.com|

367

mailto:evdwal@plcopen.org
http://www.plcopen.org/
mailto:plcopenna@tsuonline.com
mailto: plcopen-japan@MUGEN.COM

L]Index|

—A—
ACCESS 236
Access path 47, 232, 241
Accumulator see CR
Action 179, 182, 359
Boolean 179, 182
instruction 182
Action block 179, 182, 359
Action control 189, 359
Action control function block 359
Action name 184
Action qudlifier
in SFC 184, 189
Active attribute 165
Actual parameter 36, 56, 359
FBD 135
IL 104
LD 148
Allocation list 255, 256
Allocation table 231, 359
Amendments 16, 357
American Ladder 159
Application model 293
Arithmetic functions 304
Array 80, 359
limits 80
Assignment (ST) 116
Assignment list 88
Attribute Qualifier 91

—B—
Basic FB in |IEC 61499 296
Bistable elements (flip-flops) 316
Bit-shift functions 305
Bitwise Boolean functions 306
Block 22, 359

in |[EC 61499 292
Block types 30
Branch back (SFC) 169
Breakpoint 268
Buyer's guide 300

—C—

Call parameters 242

CASE 121

CD contents 299

Character string functions 311
CIM 359

Close contact 144, 160

Cail 143, 160
Cold restart 91, 359
Comment 257, 360
IL 97
LD/FBD 129
SFC 165
ST 111
Communication 240
Communication blocks 242
Communication Manager 262
Comparison functions 310
Configuration 230, 360
communication 231
documentation 255
example 237
RSXLogix 163
CONFIGURATION 53, 231
Configuration editor 289, 298
Configuration elements 228
Connecting line
FBD 134
Connection
LD 142
Connector 95
LD/FBD 130
SFC 174
Contact 143, 144, 160
Control flow 290, 294
Convergence of sequences 168
Corrigendum 16
Counters 318
CPU 360
CR 97, 360
Cross-compilation 136, 248, 360
additional information 252
quality 253
restrictions 250
Cross-reference 255
Cross-reference list 256
Current address 359
Current result 360 see CR
Cycle 360
Cycletime 360

—D—

Data access
type-oriented 284

Data block 30, 46, 360

Data blocks 269

Data flow 290, 294

332 L Index

Data structure 90
Datatype 74, 75, 360

array 78

derivation 82

Derivation 360

derived 77

elementary 76, 360

enumeration 78

generic 84

Generic 361

initial value 78

range 78

structure 78
Declaration 360
Declaration block 360
Decompilation 245, 246
Delimiter 66
Delimiters 349
Derivation of datatypes 77
Derived function block 276
Device

in |[EC 61499 291
Device model 291
Diagnostics 276
Directly represented variable 87, 241,

360
Distributed application 273
Distributed FBs 273
Divergent path 167, 168

—E—
Edge 360
Edge detection 48, 317
Elementary data type 76, 360
EN 159
EN/ENO 50
FBD 135
LD 149
ENO 159
Enumerated data type 79
Enumeration 360
Error causes 333
Error concept 277
Examples
IL (mountain railway) 107
LD (mountain railway) 153
Execution control
FBD 134
LD 147
Execution Control Chart (ECC) 294

EXIT 125

Expression 113

Expression (ST) 113
processing sequence 115

Extension of functions 361

External variables 242

—F—
FB see Function block
FB call
FB 148
FBD 135
IL 106
indirect 361
ST 118
FB instance 22, 60, 361
FB interconnection 273
in IEC 61499 289
FB type 42, 361
FBD 361
call of FB 135
call of function 135
Feedback path
FBD 137
Feedback variable
FBD 137
LD 151
FOR 123
Forcing 267
Formal parameter 36, 56, 361
FBD 132
LD 148
ST 118
FUN see Function
Function 31, 48, 361
execution control 50
variable types 49
Function block 31, 41, 361
compositein IEC 61499 296
encapsulating 47
indirect call 62
instance name 86
instantiation 22, 41
object-oriented 47
re-usability 47
re-usable 47
side effects 47
user-defined in |IEC 61499 298
variable types 48
Function block calls 53

Function Block Diagram 361
Function block model 294
Function call
FBD 135
IL 104
LD 149
ST 114, 115
Function calls 53
Function return value
ST 114
Function value 49
IL 104
LD 149
ST 118
Fuzzy Control Language 16

—G—
Global variables 241
Graphical element
FBD 133
LD 142
Graphical object
FBD 133
LD 142

—H—
Hierarchical address 87, 361
Hot restart 361

—]—
1/0 361
1/0 map 255
1/O modules 72, 87
|dentifier 66, 70
IEC 61131-3
common language elements 65
graphical languages 95
main advantages 283
software model 227
structured PLC programs 286
textua languages 95
variable concept 75
IEC 61499
overview, structure 298
IF 119
IL 96, 361
call of functions 104
FB call 106
IL examples 323
IL syntax 339

L Index 333

Implementati on-dependent parameters
335
Indicator variable
SFC 182, 184
Indirect addressing 161
Initial step 173, 196
Initial value 361
a program start 90
for user data 284
Initialisation
FB instance 59
Input parameters
PROG 236
Instance 41, 361
data block 46
memory 45, 46
RETAIN 46
structure 43
Instance name 86
Instruction
IL 96
Instruction List 361
Instruction List see IL
Instruction part
SFC 184
Intermediate language 96

—K—
Keywords 66

—L—
Label 97
Ladder

the American way 159
Ladder Diagram 361 see LD
Language compatibility 247
Language elements

simple 65
LD 141, 362

action block 187

cal of FB 148

cal of functions 149
Library 274
Literal 66, 68

—M—
Macro 275

MCP 163
Modifier (IL) 100
Mountain railway

334 L Index

examplefor IL 107

examplein LD 153
Multi-element variable 49, 88, 362
Multiplexer functions 308
Multi-selection (ST) 120

—N—
Network

evaluation order FBD 136
Network 128

evaluation order LD 136, 149
Network architecture

FBD 131

LD 141
Network comment 129
Network graphic 129
Network label 128
New start 362
Numerical functions 303

—0O—
Online modification 262
Open contact 144, 160
Operand

IL 95, 97

ST 113
Operator

ST 113
Operator (IL) 95, 97, 100

ANY 103

BOOL 102

FB input variable 106

Jump/Call 104

parenthesis 102
Operator (ST)

function 115
Operator groups 99
Organisation block 30
Output parameters

PROG 236
Overloading of functions 85, 362

—p—
Parenthesis operator (IL) 100
Partial statement 113

PC 362

Plant documentation 255
PLC 362

PLC addresses 88

PLC configuration 227, 285

PL C programming computer 362
PL C programming system 243, 362
examples on CD 299
trend 286
PLC system 362
PLCopen 16
POU 21, 30, 362
basic elements 32
code part 23, 39
declaration part 34, 71
formal parameter 37
IL examples 323
input parameter 45
interface characteristics 36
introductory examplein IL 25
language independence 254
output parameter 45
overview 21, 30
recursive cals 54
return value 37
re-use 32
reuse of blocks 284
summary of features 64
types 30
variable access 37
variable types 35
Power flow 265
PROG see Program
Program 31, 52, 362
PROGRAM 53, 233
Program documentation 255
Program organisation unit 362 see POU
Program status 263, 265
Program structure
documentation 255
SFC 164
Program test 268
in SFC 269
Program transfer 261
Programming computer 362
Programming languages
features 40
Programming system 362
Programming tools
requirements 243
Project Manager 257
regquirements 260

Q

Q output 190

Qualifier
attribute 91
in SFC 179

—R—
Range specification 362
Recipe 269
Recursion 362
REPEAT 122
Reserved keywords 67, 349
Resource 230, 362

in |[EC 61499 291
RESOURCE 232
Resource model 292
RETAIN 23, 48
Retentive data 362
Re-usability

function block 47
Re-use 29, 32
Reverse compiling 363
Reverse documentation 245
Rewiring 231
Rockwell 159
Run-time program 229, 230, 363
Run-time properties 233

in IEC 61499 291

—S—
Scan time 360
Selection (ST) 119
Selection functions 307, 308
Semantics 65, 363
Sequence 164, 167
Sequence block 30, 164
Sequence loop 169
Sequence skip 169
Sequential control (SFC) 195
Sequential Function Chart 363 see SFC
Service interface function blocks 292
SFC 164, 363

network 165

structure 164, 181
Side effects

FBs47

LD 152
Simultaneous sequences 168
Single sequence 167
Single step 268
Single-element variable 88, 363
ST 111, 363

L Index 335

cal of FB 118
cal of function 114
Standard data types 331
Standard FB
in IEC 61499 298
Standard function blocks 217, 315, 363
bistable elements (flip-flops) 316
caling interface 218
counters 318
description in Appendix B 315
edge detection 317
examples 218
timers 320
Standard functions 202, 301, 363
arithmetic 304
bitwise Boolean functions 306
caling interface 209
description in appendix A 301
examples 209
extensible 208
for binary selection 308
for bit-shifting 305
for character string 311
for comparison 310
for enumerated data types 314
for multiplexers 308
for selection 307
for time data types 313
for type conversion 302
numerical 303
overloading 206
Start modes 263
Starting count 361
State diagram
in |[EC 61499 294
Statement 95
ST 112
Statement List Language 361
Status
asynchronous 266
data analysis 266
on change 266
synchronous 265
Std. FB 363
Std. FUN 363
Step 165, 172, 363
Step flag 172, 184
Step name 172
Stereo cassette recorder
examplein ST 125
FBD 137

336 L Index

STL 361
Structure 81
Structure component 89
Structured Text 363 see ST
Symbol table 88
Symbolic variable 87, 363
Syntax 65, 363

IL 339
Syntax diagram for IL 339
System model 291

—T—
Task 228, 230, 363
parameter 235
TASK 233
Technical Reports 15
Test & Commissioning 261
Timers 320
Token see Active attribute
Transition 165, 172, 174, 363
condition 172
Transition condition
connector 174
immediate syntax 174
Transition name 174
Transition-sensing
coil 146

Transition-sensing contact 145

Type check in IL 98
Type checking 74
Type compatibility 324

inST 117
Type conversion functions 302
Type definition 71, 77, 363
initial values 83

—\V—
VAR_DYN 45
VAR_EXTERNAL 45, 48, 61
VAR_IN_OUT 37, 45, 48, 61
VAR_INPUT 37, 45, 61
VAR_OUTPUT 37, 45, 61
Variable 85, 363
attributes 91
declaration 22
instead of hardware addresses 72,
283
qualifiers 91
Variable declaration 86
example 23
graphical representation 93
qualifiers 91
Variablelist 265
Variable status 263, 265
Variable types 38

—W—
Warm reboot 91, 363
Warm restart 91, 364
WHILE 122

Wiring list 255, 256

	Strukturierte Lesezeichen
	Contents
	1 Introduction
	1.1 Subject of the Book
	1.2 The IEC 61131 standard
	1.2.1 Goals and benefits of the standard
	Manufacturers (PLC hardware and software)
	Customers
	1.2.2 History and components
	1.3 The Organisation PLCopen
	1.3.1 Aims
	1.3.2 Committees and fields of activity
	1.3.3 Results
	Certification
	Exchange format for user programs
	2 Building Blocks of IEC€61131
	2.1 Introduction to the New Standard
	2.1.1 Structure of the building blocks
	Declaration of variables
	Code part of a POU
	2.1.2 Introductory example written in IL
	2.1.3 PLC assignment
	2.2 The Program Organisation Unit (POU)
	2.3 Elements of a POU
	2.3.1 Example
	2.3.2 Declaration part
	Types of variables in POUs.
	Characteristics of the POU interface
	The formal parameters and return values of a POU
	External and internal access to POU variables
	2.3.3 Code part
	2.4 The Function Block
	2.4.1 Instances of function blocks
	What is an “instance”?
	Instance means “structure”.
	Instance means “memory”.
	Relationship between FB instances and data blocks.
	2.4.2 Re-usable and object-oriented FBs
	2.4.3 Types of variables in FBs
	2.5 The Function
	2.5.1 Types of variables in functions and the function value
	2.5.2 Execution control with EN and ENO
	2.6 The Program
	2.7 Calling Functions and Function Blocks
	2.7.1 Mutual calls of POUs
	2.7.2 Recursive calls are forbidden
	2.7.3 Calling with formal parameters
	2.7.4 Calls with input parameters omitted or in a different order
	2.7.5 FB instances as actual FB parameters
	Example of an indirect FB call.
	FB instance names as actual parameters of functions.
	Function values as actual parameters.
	2.8 Summary of POU Features
	3 Variables, Data Types and Common Elements
	4 The New Programming Languages of IEC€61131-3
	5 Standardised PLC Functionality
	5.1 Standard Functions
	5.1.1 Overloaded and extensible functions
	Overloaded functions
	Extensible functions
	5.1.1 Examples
	Type conversion functions
	Numerical functions
	Arithmetic functions
	Bit-shift functions
	Bitwise Boolean functions
	Selection functions
	Comparison functions
	Character string functions
	Functions for time data types.
	Functions for enumerated data types
	5.2 Standard Function Blocks
	5.2.2 Examples
	Bistable element (flipflop)
	Edge detection
	Counter
	Timer
	6 State-of-the-Art PLC Configuration
	6.1 Structuring Projects with Configuration Elements
	6.2 Elements of a Real-World PLC Configuration
	6.3 Configuration Elements
	6.3.1 Definitions
	6.3.2 The CONFIGURATION
	6.3.3 The RESOURCE
	6.3.4 The TASK with run-time program
	6.3.5 ACCESS declarations
	6.4 Configuration Example
	6.5 Communication between Configurations and POUs
	7 Innovative PLC Programming Systems
	7.1 Requirements of Innovative Programming Tools
	7.2 Technological Change
	7.2.1 Processor performance
	7.2.2 Full-graphics display and printout
	7.2.3 Operating systems
	7.2.4 Uniform user interfaces
	7.3 Decompilation (Reverse Documentation)
	7.3.1 No decompilation
	7.3.2 Decompilation with symbols and comments
	7.3.3 Decompilation including graphics
	7.3.4 Sources stored in the PLC
	7.4 Language Compatibility
	7.4.1 Cross-compilation
	The motivation for cross-compilation
	Different approaches in graphical and textual languages.
	Differences in languages affect cross-compilation.
	Restrictions in LD/ FBD.
	Restrictions in IL/ ST.
	Cross-compilation IL / ST.
	Full cross-compilation only with additional information.
	Quality criteria for cross-compilation.
	7.4.2 Language independence
	7.5 Documentation
	7.5.1 Cross-reference list
	7.5.2 Allocation list (wiring list)
	7.5.3 Comments
	7.6 Project Manager
	7.7 Test & Commissioning Functions
	7.7.1 Program transfer
	7.7.2 Online modification of a program
	7.7.3 Remote control: Starting and stopping the PLC
	7.7.4 Variable and program status
	7.7.5 Forcing
	7.7.6 Program test
	7.7.7 Testing Sequential Function Chart programs
	7.8 Data Blocks and Recipes
	7.9 FB Interconnection
	7.9.1 Data exchange and co-ordination of blocks in distributed systems
	7.9.2 Macro techniques in FB interconnection
	7.10 Diagnostics, Error Detection and Error Handling
	Error concept of IEC€61131
	Extended error handling model (beyond IEC).
	7.11 Hardware-Dependence
	7.12 Readiness for New Functionality
	7.12.1 Exchange of programs and data
	7.12.2 Extension with additional software packages
	8 Main Advantages of IEC€61131
	8.1 Convenience and Security with Variables and Data Types
	8.2 Blocks with Extended Capabilities
	8.3 PLC Configuration with Run-Time Behaviour
	8.4 Uniform Programming Languages
	8.5 Structured PLC Programs
	8.6 Trend towards Open PLC Programming Systems
	8.7 Conclusion
	9 Programming by Configuring with IEC€61499
	9.1 Programming by FB Interconnection with IEC€61131
	9.2 IEC 61499 – The Programming Standard for Distributed PLC Systems
	9.2.1 System model
	9.2.2 Device model
	9.2.3 Resource model
	9.2.4 Application model
	9.2.5 Function block model
	Composite function blocks
	9.2.6 Creating an application
	9.3 Overview of the Parts of IEC€61499
	10 Contents of CD-ROM
	10.1 IEC Programming Systems STEP€7 and OpenPCS
	Demo versions of STEP€7 (Siemens) and OpenPCS (infoteam).
	Footnote
	IL examples
	10.2 Buyer's Guide for IEC€61131
	A Standard Functions
	A.1 Type Conversion Functions
	A.2 Numerical Functions
	A.3 Arithmetic Functions
	A.4 Bit-Shift Functions
	A.5 Bitwise Boolean Functions
	A.6 Selection Functions for Max., Min. and Limit
	A.7 Selection Functions for Binary Selection and Multiplexers
	A.8 Comparison Functions
	A.9 Character String Functions
	A.10 Functions for Time Data Types
	A.11 Functions for Enumerated Data Types
	B Standard Function Blocks
	B.1 Bistable Elements (Flip-Flops)
	B.2 Edge Detection
	B.3 Counters
	B.4 Timers
	C IL Examples
	C.1 Example of a FUNCTION
	C.2 Example of a FUNCTION_BLOCK
	C.3 Example of a PROGRAM
	D Standard Data Types
	E Causes of Error
	F Implementation-Dependent Parameters
	G IL Syntax Example
	G.1 Syntax Diagrams for IL
	G.2 IL Example from Syntax Diagrams
	H Reserved Keywords and Delimiters
	H.1 Reserved Keywords
	H.2 Delimiters
	I Planned Amendments to the Standard
	J Glossary
	K Bibliography
	L Index

